Trigonometría Ejemplos

Hallar la inversa cot(arctan( raíz cuadrada de 2/x))
Step 1
Intercambia las variables.
Step 2
Resuelve
Toca para ver más pasos...
Reescribe la ecuación como .
Resta la inversa de la cotangente de ambos lados de la ecuación para extraer del interior de la cotangente.
Calcula la inversa de la arcotangente de ambos lados de la ecuación para extraer del interior de la arcotangente.
Simplifica el lado izquierdo.
Toca para ver más pasos...
Simplifica .
Toca para ver más pasos...
Reescribe como .
Multiplica por .
Combina y simplifica el denominador.
Toca para ver más pasos...
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica.
Combina con la regla del producto para radicales.
Simplifica el lado derecho.
Toca para ver más pasos...
Dibuja un triángulo en el plano con los vértices , y el origen. Entonces es el ángulo entre el eje x positivo y el rayo que comienza en el origen y pasa por . Por lo tanto, es .
Multiplicación cruzada.
Toca para ver más pasos...
Aplica la multiplicación cruzada; para ello, haz que el producto del numerador del lado derecho y el denominador del lado izquierdo sean iguales al producto del numerador del lado izquierdo y el denominador del lado derecho.
Simplifica el lado izquierdo.
Toca para ver más pasos...
Multiplica por .
Simplifica el lado derecho.
Toca para ver más pasos...
Multiplica por .
Reescribe la ecuación como .
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cuadrado ambos lados de la ecuación.
Simplifica cada lado de la ecuación.
Toca para ver más pasos...
Usa para reescribir como .
Simplifica el lado izquierdo.
Toca para ver más pasos...
Simplifica .
Toca para ver más pasos...
Aplica la regla del producto a .
Usa la regla de la potencia para distribuir el exponente.
Toca para ver más pasos...
Aplica la regla del producto a .
Aplica la regla del producto a .
Multiplica los exponentes en .
Toca para ver más pasos...
Aplica la regla de la potencia y multiplica los exponentes, .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Evalúa el exponente.
Multiplica los exponentes en .
Toca para ver más pasos...
Aplica la regla de la potencia y multiplica los exponentes, .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica.
Resuelve
Toca para ver más pasos...
Resta de ambos lados de la ecuación.
Factoriza de .
Toca para ver más pasos...
Factoriza de .
Factoriza de .
Factoriza de .
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Establece igual a .
Establece igual a y resuelve .
Toca para ver más pasos...
Establece igual a .
Resuelve en .
Toca para ver más pasos...
Resta de ambos lados de la ecuación.
Divide cada término en por y simplifica.
Toca para ver más pasos...
Divide cada término en por .
Simplifica el lado izquierdo.
Toca para ver más pasos...
La división de dos valores negativos da como resultado un valor positivo.
Divide por .
Simplifica el lado derecho.
Toca para ver más pasos...
Mueve el negativo del denominador de .
Reescribe como .
Multiplica por .
La solución final comprende todos los valores que hacen verdadera.
Step 3
Elimina las respuestas numéricas.
Step 4
Replace with to show the final answer.
Step 5
Verifica si es la inversa de .
Toca para ver más pasos...
Para verificar la inversa, comprueba si y .
Evalúa .
Toca para ver más pasos...
Establece la función de resultado compuesta.
Evalúa mediante la sustitución del valor de en .
Dibuja un triángulo en el plano con los vértices , y el origen. Entonces es el ángulo entre el eje x positivo y el rayo que comienza en el origen y pasa por . Por lo tanto, es .
Simplifica el denominador.
Toca para ver más pasos...
Reescribe como .
Multiplica por .
Combina y simplifica el denominador.
Toca para ver más pasos...
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica.
Combina con la regla del producto para radicales.
Multiplica el numerador por la recíproca del denominador.
Multiplica por .
Multiplica por .
Combina y simplifica el denominador.
Toca para ver más pasos...
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica.
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Aplica la regla del producto a .
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica.
Eleva a la potencia de .
Cancela el factor común de .
Toca para ver más pasos...
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Divide por .
Evalúa .
Toca para ver más pasos...
Establece la función de resultado compuesta.
Evalúa mediante la sustitución del valor de en .
Dibuja un triángulo en el plano con los vértices , y el origen. Entonces es el ángulo entre el eje x positivo y el rayo que comienza en el origen y pasa por . Por lo tanto, es .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica el denominador.
Toca para ver más pasos...
Reescribe como .
Reescribe como .
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Multiplica el numerador por la recíproca del denominador.
Multiplica por .
Como y , entonces es la inversa de .
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información