Ingresa un problema...
Trigonometría Ejemplos
Step 1
Resta de ambos lados de la ecuación.
Step 2
Simplifica cada término.
Reescribe en términos de senos y cosenos.
Multiplica por la recíproca de la fracción para dividir por .
Escribe como una fracción con el denominador .
Simplifica.
Divide por .
Combina y .
Simplifica el numerador.
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Multiplica por .
Combina y simplifica el denominador.
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Cancela el factor común.
Reescribe la expresión.
Simplifica.
Reescribe en términos de senos y cosenos.
Simplifica cada término.
Separa las fracciones.
Convierte de a .
Divide por .
Convierte de a .
Step 3
Usa para reescribir como .
Factoriza de .
Factoriza de .
Factoriza de .
Factoriza de .
Step 4
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Step 5
Establece igual a .
Resuelve en .
Resta la inversa de la cotangente de ambos lados de la ecuación para extraer del interior de la cotangente.
Simplifica el lado derecho.
El valor exacto de es .
La función cotangente es positiva en el primer y el tercer cuadrante. Para obtener la segunda solución, suma el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Simplifica .
Para escribir como una fracción con un denominador común, multiplica por .
Combina fracciones.
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Mueve a la izquierda de .
Suma y .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 6
Establece igual a .
Resuelve en .
Suma a ambos lados de la ecuación.
Eleva cada lado de la ecuación a la potencia de para eliminar el exponente fraccionario en el lado izquierdo.
Simplifica el exponente.
Simplifica el lado izquierdo.
Simplifica .
Multiplica los exponentes en .
Aplica la regla de la potencia y multiplica los exponentes, .
Cancela el factor común de .
Cancela el factor común.
Reescribe la expresión.
Simplifica.
Simplifica el lado derecho.
Uno elevado a cualquier potencia es uno.
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Simplifica el lado derecho.
El valor exacto de es .
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Simplifica .
Para escribir como una fracción con un denominador común, multiplica por .
Combina fracciones.
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Mueve a la izquierda de .
Resta de .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 7
La solución final comprende todos los valores que hacen verdadera.
, para cualquier número entero
Step 8
Consolida las respuestas.
, para cualquier número entero