Ingresa un problema...
Trigonometría Ejemplos
Paso 1
Paso 1.1
Para obtener la coordenada de del vértice, establece el interior del valor absoluto igual a . En este caso, .
Paso 1.2
Resuelve la ecuación para obtener la coordenada para el vértice del valor absoluto.
Paso 1.2.1
Resta de ambos lados de la ecuación.
Paso 1.2.2
Divide cada término en por y simplifica.
Paso 1.2.2.1
Divide cada término en por .
Paso 1.2.2.2
Simplifica el lado izquierdo.
Paso 1.2.2.2.1
Cancela el factor común de .
Paso 1.2.2.2.1.1
Cancela el factor común.
Paso 1.2.2.2.1.2
Divide por .
Paso 1.2.2.3
Simplifica el lado derecho.
Paso 1.2.2.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 1.3
Reemplaza la variable con en la expresión.
Paso 1.4
Simplifica .
Paso 1.4.1
Simplifica cada término.
Paso 1.4.1.1
Simplifica cada término.
Paso 1.4.1.1.1
Cancela el factor común de .
Paso 1.4.1.1.1.1
Factoriza de .
Paso 1.4.1.1.1.2
Cancela el factor común.
Paso 1.4.1.1.1.3
Reescribe la expresión.
Paso 1.4.1.1.2
Multiplica por .
Paso 1.4.1.2
Suma y .
Paso 1.4.1.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 1.4.1.4
Multiplica por .
Paso 1.4.2
Resta de .
Paso 1.5
El vértice del valor absoluto es .
Paso 2
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 3
Paso 3.1
Sustituye el valor en . En este caso, el punto es .
Paso 3.1.1
Reemplaza la variable con en la expresión.
Paso 3.1.2
Simplifica el resultado.
Paso 3.1.2.1
Simplifica cada término.
Paso 3.1.2.1.1
Multiplica por .
Paso 3.1.2.1.2
Suma y .
Paso 3.1.2.1.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 3.1.2.1.4
Multiplica por .
Paso 3.1.2.2
Resta de .
Paso 3.1.2.3
La respuesta final es .
Paso 3.2
Sustituye el valor en . En este caso, el punto es .
Paso 3.2.1
Reemplaza la variable con en la expresión.
Paso 3.2.2
Simplifica el resultado.
Paso 3.2.2.1
Simplifica cada término.
Paso 3.2.2.1.1
Multiplica por .
Paso 3.2.2.1.2
Suma y .
Paso 3.2.2.1.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 3.2.2.1.4
Multiplica por .
Paso 3.2.2.2
Resta de .
Paso 3.2.2.3
La respuesta final es .
Paso 3.3
Sustituye el valor en . En este caso, el punto es .
Paso 3.3.1
Reemplaza la variable con en la expresión.
Paso 3.3.2
Simplifica el resultado.
Paso 3.3.2.1
Simplifica cada término.
Paso 3.3.2.1.1
Multiplica por .
Paso 3.3.2.1.2
Suma y .
Paso 3.3.2.1.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 3.3.2.1.4
Multiplica por .
Paso 3.3.2.2
Resta de .
Paso 3.3.2.3
La respuesta final es .
Paso 3.4
Sustituye el valor en . En este caso, el punto es .
Paso 3.4.1
Reemplaza la variable con en la expresión.
Paso 3.4.2
Simplifica el resultado.
Paso 3.4.2.1
Simplifica cada término.
Paso 3.4.2.1.1
Multiplica por .
Paso 3.4.2.1.2
Suma y .
Paso 3.4.2.1.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 3.4.2.1.4
Multiplica por .
Paso 3.4.2.2
Resta de .
Paso 3.4.2.3
La respuesta final es .
Paso 3.5
El valor absoluto puede representarse gráficamente mediante los puntos alrededor del vértice
Paso 4