Ingresa un problema...
Trigonometría Ejemplos
Step 1
Para cualquier , las asíntotas verticales se producen en , donde es un número entero. Usa el período básico de , , a fin de obtener las asíntotas verticales de . Establece el interior de la función secante, , para que sea igual a a fin de obtener dónde se produce la asíntota vertical de .
Resuelve
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Resta de ambos lados de la ecuación.
Para escribir como una fracción con un denominador común, multiplica por .
Para escribir como una fracción con un denominador común, multiplica por .
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Multiplica por .
Multiplica por .
Multiplica por .
Multiplica por .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Multiplica por .
Multiplica por .
Resta de .
Mueve el negativo al frente de la fracción.
Multiplica ambos lados de la ecuación por .
Simplifica ambos lados de la ecuación.
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Reescribe la expresión.
Simplifica el lado derecho.
Simplifica .
Cancela el factor común de .
Mueve el signo menos inicial en al numerador.
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Mueve el negativo al frente de la fracción.
Establece el interior de la secante igual a .
Resuelve
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Resta de ambos lados de la ecuación.
Para escribir como una fracción con un denominador común, multiplica por .
Para escribir como una fracción con un denominador común, multiplica por .
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Multiplica por .
Multiplica por .
Multiplica por .
Multiplica por .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Multiplica por .
Multiplica por .
Resta de .
Multiplica ambos lados de la ecuación por .
Simplifica ambos lados de la ecuación.
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Reescribe la expresión.
Simplifica el lado derecho.
Cancela el factor común de .
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
El período básico de se producirá en , donde y son asíntotas verticales.
Obtén el período para buscar dónde existen las asíntotas verticales. Las asíntotas verticales ocurren cada medio período.
es aproximadamente , que es positivo, así es que elimina el valor absoluto
Multiplica el numerador por la recíproca del denominador.
Multiplica por .
Las asíntotas verticales de se producen en , y en cada , donde es un número entero. Esta es la mitad del período.
La secante solo tiene asíntotas verticales.
No hay asíntotas horizontales
No hay asíntotas oblicuas
Asíntotas verticales: donde es un número entero
No hay asíntotas horizontales
No hay asíntotas oblicuas
Asíntotas verticales: donde es un número entero
Step 2
Usa la forma para obtener las variables utilizadas para obtener la amplitud, el período, el desfase y el desplazamiento vertical.
Step 3
Como la gráfica de la función no tiene un valor máximo o mínimo, no puede haber un valor para la amplitud.
Amplitud: ninguna
Step 4
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
es aproximadamente , que es positivo, así es que elimina el valor absoluto
Multiplica el numerador por la recíproca del denominador.
Multiplica por .
Step 5
El desfase de la función puede calcularse a partir de .
Desfase:
Reemplaza los valores de y en la ecuación para el desfase.
Desfase:
Multiplica el numerador por la recíproca del denominador.
Desfase:
Multiplica .
Multiplica por .
Desfase:
Combina y .
Desfase:
Desfase:
Mueve el negativo al frente de la fracción.
Desfase:
Desfase:
Step 6
Enumera las propiedades de la función trigonométrica.
Amplitud: ninguna
Período:
Desfase: ( a la izquierda)
Desplazamiento vertical: ninguno
Step 7
La función trigonométrica puede representarse de forma gráfica con la amplitud, el período, el desfase, el desplazamiento vertical y los puntos.
Asíntotas verticales: donde es un número entero
Amplitud: ninguna
Período:
Desfase: ( a la izquierda)
Desplazamiento vertical: ninguno
Step 8