Ingresa un problema...
Trigonometría Ejemplos
Step 1
Para cualquier , las asíntotas verticales se producen en , donde es un número entero. Usa el período básico de , , a fin de obtener las asíntotas verticales de . Establece el interior de la función tangente, , para que sea igual a a fin de obtener dónde se produce la asíntota vertical de .
Resuelve
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Resta de ambos lados de la ecuación.
Para escribir como una fracción con un denominador común, multiplica por .
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Multiplica por .
Resta de .
Mueve el negativo al frente de la fracción.
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Multiplica el numerador por la recíproca del denominador.
Multiplica .
Multiplica por .
Multiplica por .
Establece el interior de la función de la tangente igual a .
Resuelve
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Resta de ambos lados de la ecuación.
Para escribir como una fracción con un denominador común, multiplica por .
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Multiplica por .
Resta de .
Mueve el negativo al frente de la fracción.
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Multiplica el numerador por la recíproca del denominador.
Multiplica .
Multiplica por .
Multiplica por .
El período básico de se producirá en , donde y son asíntotas verticales.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Las asíntotas verticales de se producen en , y en cada , donde es un número entero.
La tangente solo tiene asíntotas verticales.
No hay asíntotas horizontales
No hay asíntotas oblicuas
Asíntotas verticales: donde es un número entero
No hay asíntotas horizontales
No hay asíntotas oblicuas
Asíntotas verticales: donde es un número entero
Step 2
Usa la forma para obtener las variables utilizadas para obtener la amplitud, el período, el desfase y el desplazamiento vertical.
Step 3
Como la gráfica de la función no tiene un valor máximo o mínimo, no puede haber un valor para la amplitud.
Amplitud: ninguna
Step 4
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
El período de la suma/resta de las funciones trigonométricas es el máximo de los períodos individuales.
Step 5
El desfase de la función puede calcularse a partir de .
Desfase:
Reemplaza los valores de y en la ecuación para el desfase.
Desfase:
Mueve el negativo al frente de la fracción.
Desfase:
Desfase:
Step 6
Enumera las propiedades de la función trigonométrica.
Amplitud: ninguna
Período:
Desfase: ( a la izquierda)
Desplazamiento vertical:
Step 7
La función trigonométrica puede representarse de forma gráfica con la amplitud, el período, el desfase, el desplazamiento vertical y los puntos.
Asíntotas verticales: donde es un número entero
Amplitud: ninguna
Período:
Desfase: ( a la izquierda)
Desplazamiento vertical:
Step 8