Trigonometría Ejemplos

Halla la intersección de las inecuaciones sin(x)>0 , tan(x)<0
,
Step 1
Simplifica la primera desigualdad.
Toca para ver más pasos...
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
y
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
y
y
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
y
Resta de .
y
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
y
Consolida las respuestas.
y
Usa cada raíz para crear intervalos de prueba.
y
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Toca para ver más pasos...
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
y
Reemplaza con en la desigualdad original.
y
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero y
Verdadero y
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
y
Reemplaza con en la desigualdad original.
y
del lado izquierdo no es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso y
Falso y
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Verdadero
False and
Verdadero
False and
La solución consiste en todos los intervalos verdaderos.
y
y
Step 2
Simplifica la segunda desigualdad.
Toca para ver más pasos...
Resta la inversa de la tangente de ambos lados de la ecuación para extraer del interior de la tangente.
y
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
y
y
La función tangente es positiva en el primer y el tercer cuadrante. Para obtener la segunda solución, suma el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
y
Suma y .
y
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
y
Consolida las respuestas.
y
Usa cada raíz para crear intervalos de prueba.
y
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Toca para ver más pasos...
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
y
Reemplaza con en la desigualdad original.
y
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
and True
and True
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
and True
and True
La solución consiste en todos los intervalos verdaderos.
y
y
Step 3
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información