Ingresa un problema...
Trigonometría Ejemplos
Step 1
Suma a ambos lados de la ecuación.
Step 2
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Step 3
Calcula la raíz cuadrada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Step 4
Reescribe como .
Cualquier raíz de es .
Multiplica por .
Combina y simplifica el denominador.
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Cancela el factor común.
Reescribe la expresión.
Evalúa el exponente.
Step 5
Primero, usa el valor positivo de para obtener la primera solución.
Luego, usa el valor negativo de para obtener la segunda solución.
La solución completa es el resultado de las partes positiva y negativa de la solución.
Step 6
Establece cada una de las soluciones para obtener el valor de .
Step 7
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Simplifica el lado derecho.
El valor exacto de es .
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Multiplica el numerador por la recíproca del denominador.
Multiplica .
Multiplica por .
Multiplica por .
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Resuelve
Simplifica.
Para escribir como una fracción con un denominador común, multiplica por .
Combina y .
Combina los numeradores sobre el denominador común.
Resta de .
Reordena y .
Resta de .
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Multiplica el numerador por la recíproca del denominador.
Cancela el factor común de .
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Step 8
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Simplifica el lado derecho.
El valor exacto de es .
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Multiplica el numerador por la recíproca del denominador.
Multiplica .
Multiplica por .
Multiplica por .
La función seno es negativa en el tercer y el cuarto cuadrante. Para obtener la segunda solución, resta la solución de para obtener un ángulo de referencia. A continuación, suma este ángulo de referencia a para obtener la solución en el tercer cuadrante.
Simplifica la expresión para obtener la segunda solución.
Resta de .
El ángulo resultante de es positivo, menor que y coterminal con .
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Multiplica el numerador por la recíproca del denominador.
Multiplica .
Multiplica por .
Multiplica por .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Suma a todos los ángulos negativos para obtener ángulos positivos.
Suma y para obtener el ángulo positivo.
Para escribir como una fracción con un denominador común, multiplica por .
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Multiplica por .
Multiplica por .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Multiplica por .
Resta de .
Enumera los nuevos ángulos.
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Step 9
Enumera todas las soluciones.
, para cualquier número entero
Step 10
Consolida las respuestas.
, para cualquier número entero