Trigonometría Ejemplos

حل من أجل x 2sec(x)^2=3-tan(x)
Step 1
Reemplaza con según la identidad de .
Step 2
Aplica la propiedad distributiva.
Step 3
Multiplica por .
Step 4
Reordena el polinomio.
Step 5
Sustituye por .
Step 6
Suma a ambos lados de la ecuación.
Step 7
Resta de ambos lados de la ecuación.
Step 8
Resta de .
Step 9
Factoriza por agrupación.
Toca para ver más pasos...
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Multiplica por .
Reescribe como más
Aplica la propiedad distributiva.
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Agrupa los dos primeros términos y los dos últimos términos.
Factoriza el máximo común divisor (MCD) de cada grupo.
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Step 10
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Step 11
Establece igual a y resuelve .
Toca para ver más pasos...
Establece igual a .
Resuelve en .
Toca para ver más pasos...
Suma a ambos lados de la ecuación.
Divide cada término en por y simplifica.
Toca para ver más pasos...
Divide cada término en por .
Simplifica el lado izquierdo.
Toca para ver más pasos...
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Divide por .
Step 12
Establece igual a y resuelve .
Toca para ver más pasos...
Establece igual a .
Resta de ambos lados de la ecuación.
Step 13
La solución final comprende todos los valores que hacen verdadera.
Step 14
Sustituye por .
Step 15
Establece cada una de las soluciones para obtener el valor de .
Step 16
Resuelve en .
Toca para ver más pasos...
Resta la inversa de la tangente de ambos lados de la ecuación para extraer del interior de la tangente.
Simplifica el lado derecho.
Toca para ver más pasos...
Evalúa .
La función tangente es positiva en el primer y el tercer cuadrante. Para obtener la segunda solución, suma el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Resuelve
Toca para ver más pasos...
Elimina los paréntesis.
Elimina los paréntesis.
Suma y .
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Step 17
Resuelve en .
Toca para ver más pasos...
Resta la inversa de la tangente de ambos lados de la ecuación para extraer del interior de la tangente.
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
La función tangente es negativa en el segundo y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el tercer cuadrante.
Simplifica la expresión para obtener la segunda solución.
Toca para ver más pasos...
Suma a .
El ángulo resultante de es positivo y coterminal con .
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
Suma a todos los ángulos negativos para obtener ángulos positivos.
Toca para ver más pasos...
Suma y para obtener el ángulo positivo.
Para escribir como una fracción con un denominador común, multiplica por .
Combina fracciones.
Toca para ver más pasos...
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Toca para ver más pasos...
Mueve a la izquierda de .
Resta de .
Enumera los nuevos ángulos.
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Step 18
Enumera todas las soluciones.
, para cualquier número entero
Step 19
Consolida las soluciones.
Toca para ver más pasos...
Consolida y en .
, para cualquier número entero
Consolida y en .
, para cualquier número entero
, para cualquier número entero
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información