Trigonometría Ejemplos

حل من أجل x 2sin(x)-sin(2x)=0
Step 1
Simplifica cada término.
Toca para ver más pasos...
Aplica la razón del ángulo doble sinusoidal.
Multiplica por .
Step 2
Factoriza .
Toca para ver más pasos...
Factoriza de .
Toca para ver más pasos...
Factoriza de .
Factoriza de .
Factoriza de .
Reescribe como .
Step 3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Step 4
Establece igual a y resuelve .
Toca para ver más pasos...
Establece igual a .
Resuelve en .
Toca para ver más pasos...
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Resta de .
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 5
Establece igual a y resuelve .
Toca para ver más pasos...
Establece igual a .
Resuelve en .
Toca para ver más pasos...
Resta de ambos lados de la ecuación.
Divide cada término en por y simplifica.
Toca para ver más pasos...
Divide cada término en por .
Simplifica el lado izquierdo.
Toca para ver más pasos...
La división de dos valores negativos da como resultado un valor positivo.
Divide por .
Simplifica el lado derecho.
Toca para ver más pasos...
Divide por .
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Resta de .
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 6
La solución final comprende todos los valores que hacen verdadera.
, para cualquier número entero
Step 7
Consolida las respuestas.
, para cualquier número entero
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información