Trigonometría Ejemplos

حل من أجل x 3x^2-x-3=x^2-5x-7
Paso 1
Mueve todos los términos que contengan al lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 1.1
Resta de ambos lados de la ecuación.
Paso 1.2
Suma a ambos lados de la ecuación.
Paso 1.3
Resta de .
Paso 1.4
Suma y .
Paso 2
Suma a ambos lados de la ecuación.
Paso 3
Suma y .
Paso 4
Factoriza de .
Toca para ver más pasos...
Paso 4.1
Factoriza de .
Paso 4.2
Factoriza de .
Paso 4.3
Factoriza de .
Paso 4.4
Factoriza de .
Paso 4.5
Factoriza de .
Paso 5
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 5.1
Divide cada término en por .
Paso 5.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 5.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.2.1.1
Cancela el factor común.
Paso 5.2.1.2
Divide por .
Paso 5.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.3.1
Divide por .
Paso 6
Usa la fórmula cuadrática para obtener las soluciones.
Paso 7
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 8
Simplifica.
Toca para ver más pasos...
Paso 8.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 8.1.1
Eleva a la potencia de .
Paso 8.1.2
Multiplica .
Toca para ver más pasos...
Paso 8.1.2.1
Multiplica por .
Paso 8.1.2.2
Multiplica por .
Paso 8.1.3
Resta de .
Paso 8.1.4
Reescribe como .
Paso 8.1.5
Reescribe como .
Paso 8.1.6
Reescribe como .
Paso 8.1.7
Reescribe como .
Paso 8.1.8
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 8.1.9
Mueve a la izquierda de .
Paso 8.2
Multiplica por .
Paso 8.3
Simplifica .
Paso 9
La respuesta final es la combinación de ambas soluciones.