Ingresa un problema...
Trigonometría Ejemplos
Step 1
Aplica la razón del ángulo doble sinusoidal.
Multiplica .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Step 2
Factoriza de .
Eleva a la potencia de .
Factoriza de .
Factoriza de .
Step 3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Step 4
Establece igual a .
Resuelve en .
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Simplifica el lado derecho.
El valor exacto de es .
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Simplifica .
Para escribir como una fracción con un denominador común, multiplica por .
Combina fracciones.
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Multiplica por .
Resta de .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 5
Establece igual a .
Resuelve en .
Resta de ambos lados de la ecuación.
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Mueve el negativo al frente de la fracción.
Calcula la raíz cuadrada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Simplifica .
Reescribe como .
Reescribe como .
Reescribe como .
Retira los términos de abajo del radical.
Uno elevado a cualquier potencia es uno.
Reescribe como .
Cualquier raíz de es .
Multiplica por .
Combina y simplifica el denominador.
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Cancela el factor común.
Reescribe la expresión.
Evalúa el exponente.
Combina y .
La solución completa es el resultado de las partes positiva y negativa de la solución.
Primero, usa el valor positivo de para obtener la primera solución.
Luego, usa el valor negativo de para obtener la segunda solución.
La solución completa es el resultado de las partes positiva y negativa de la solución.
Establece cada una de las soluciones para obtener el valor de .
Resuelve en .
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
La inversa del seno de es indefinida.
Indefinida
Indefinida
Resuelve en .
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
La inversa del seno de es indefinida.
Indefinida
Indefinida
Enumera todas las soluciones.
No hay solución
No hay solución
No hay solución
Step 6
La solución final comprende todos los valores que hacen verdadera.
, para cualquier número entero
Step 7
Consolida las respuestas.
, para cualquier número entero