Trigonometría Ejemplos

أوجد القيم المثلثية الأخرى في الربع I tan(x) = square root of 14
Step 1
Usa la definición de tangente para obtener los lados conocidos del triángulo rectángulo del círculo unitario. El cuadrante determina el signo en cada uno de los valores.
Step 2
Obtén la hipotenusa del triángulo del círculo unitario. Dado que se conocen los lados opuesto y adyacente, usa el teorema de Pitágoras para obtener el lado restante.
Step 3
Reemplaza los valores conocidos en la ecuación.
Step 4
Simplifica dentro del radical.
Toca para ver más pasos...
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Hipotenusa
Aplica la regla de la potencia y multiplica los exponentes, .
Hipotenusa
Combina y .
Hipotenusa
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Hipotenusa
Reescribe la expresión.
Hipotenusa
Hipotenusa
Evalúa el exponente.
Hipotenusa
Hipotenusa
Uno elevado a cualquier potencia es uno.
Hipotenusa
Suma y .
Hipotenusa
Hipotenusa
Step 5
Obtén el valor del seno.
Toca para ver más pasos...
Usa la definición de seno para obtener el valor de .
Sustituye los valores conocidos.
Simplifica el valor de .
Toca para ver más pasos...
Multiplica por .
Combina y simplifica el denominador.
Toca para ver más pasos...
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Evalúa el exponente.
Simplifica el numerador.
Toca para ver más pasos...
Combina con la regla del producto para radicales.
Multiplica por .
Step 6
Obtén el valor del coseno.
Toca para ver más pasos...
Usa la definición de coseno para obtener el valor de .
Sustituye los valores conocidos.
Simplifica el valor de .
Toca para ver más pasos...
Multiplica por .
Combina y simplifica el denominador.
Toca para ver más pasos...
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Evalúa el exponente.
Step 7
Obtén el valor de la cotangente.
Toca para ver más pasos...
Usa la definición de cotangente para obtener el valor de .
Sustituye los valores conocidos.
Simplifica el valor de .
Toca para ver más pasos...
Multiplica por .
Combina y simplifica el denominador.
Toca para ver más pasos...
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Evalúa el exponente.
Step 8
Obtén el valor de la secante.
Toca para ver más pasos...
Usa la definición de secante para obtener el valor de .
Sustituye los valores conocidos.
Divide por .
Step 9
Obtén el valor de la cosecante.
Toca para ver más pasos...
Usa la definición de cosecante para obtener el valor de .
Sustituye los valores conocidos.
Simplifica el valor de .
Toca para ver más pasos...
Multiplica por .
Combina y simplifica el denominador.
Toca para ver más pasos...
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Evalúa el exponente.
Simplifica el numerador.
Toca para ver más pasos...
Combina con la regla del producto para radicales.
Multiplica por .
Step 10
Esta es la solución de cada valor trigonométrico.
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información