Trigonometría Ejemplos

حل من أجل x sin(11/20x+pi/12)=-1/2
Step 1
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Step 2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Combina y .
Step 3
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
Step 4
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Resta de ambos lados de la ecuación.
Para escribir como una fracción con un denominador común, multiplica por .
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Toca para ver más pasos...
Multiplica por .
Multiplica por .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Toca para ver más pasos...
Multiplica por .
Resta de .
Cancela el factor común de y .
Toca para ver más pasos...
Factoriza de .
Cancela los factores comunes.
Toca para ver más pasos...
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Mueve el negativo al frente de la fracción.
Step 5
Multiplica ambos lados de la ecuación por .
Step 6
Simplifica ambos lados de la ecuación.
Toca para ver más pasos...
Simplifica el lado izquierdo.
Toca para ver más pasos...
Simplifica .
Toca para ver más pasos...
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Cancela el factor común de .
Toca para ver más pasos...
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Simplifica el lado derecho.
Toca para ver más pasos...
Simplifica .
Toca para ver más pasos...
Cancela el factor común de .
Toca para ver más pasos...
Mueve el signo menos inicial en al numerador.
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Combina y .
Step 7
La función seno es negativa en el tercer y el cuarto cuadrante. Para obtener la segunda solución, resta la solución de para obtener un ángulo de referencia. A continuación, suma este ángulo de referencia a para obtener la solución en el tercer cuadrante.
Step 8
Simplifica la expresión para obtener la segunda solución.
Toca para ver más pasos...
Resta de .
El ángulo resultante de es positivo, menor que y coterminal con .
Resuelve
Toca para ver más pasos...
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Resta de ambos lados de la ecuación.
Para escribir como una fracción con un denominador común, multiplica por .
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Toca para ver más pasos...
Multiplica por .
Multiplica por .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Toca para ver más pasos...
Multiplica por .
Resta de .
Multiplica ambos lados de la ecuación por .
Simplifica ambos lados de la ecuación.
Toca para ver más pasos...
Simplifica el lado izquierdo.
Toca para ver más pasos...
Simplifica .
Toca para ver más pasos...
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Cancela el factor común de .
Toca para ver más pasos...
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Simplifica el lado derecho.
Toca para ver más pasos...
Simplifica .
Toca para ver más pasos...
Cancela el factor común de .
Toca para ver más pasos...
Factoriza de .
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Multiplica por .
Multiplica.
Toca para ver más pasos...
Multiplica por .
Multiplica por .
Step 9
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
es aproximadamente , que es positivo, así es que elimina el valor absoluto
Multiplica el numerador por la recíproca del denominador.
Multiplica .
Toca para ver más pasos...
Combina y .
Multiplica por .
Combina y .
Step 10
Suma a todos los ángulos negativos para obtener ángulos positivos.
Toca para ver más pasos...
Suma y para obtener el ángulo positivo.
Combina los numeradores sobre el denominador común.
Resta de .
Enumera los nuevos ángulos.
Step 11
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información