Ingresa un problema...
Trigonometría Ejemplos
Step 1
Simplifica cada término.
Usa la razón del ángulo doble para transformar a .
Factoriza de .
Simplifica cada término.
Usa la razón del ángulo triple para transformar a .
Reescribe como .
Expande con el método PEIU (primero, exterior, interior, ultimo).
Aplica la propiedad distributiva.
Aplica la propiedad distributiva.
Aplica la propiedad distributiva.
Simplifica y combina los términos similares.
Simplifica cada término.
Reescribe con la propiedad conmutativa de la multiplicación.
Multiplica por sumando los exponentes.
Mueve .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Multiplica por .
Multiplica por sumando los exponentes.
Mueve .
Multiplica por .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Multiplica por .
Multiplica por sumando los exponentes.
Mueve .
Multiplica por .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Multiplica por .
Multiplica .
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Resta de .
Aplica la propiedad distributiva.
Simplifica.
Multiplica por .
Multiplica por .
Multiplica por .
Aplica la propiedad distributiva.
Simplifica.
Multiplica por .
Multiplica por .
Multiplica por .
Multiplica por .
Simplifica mediante la adición de términos.
Combina los términos opuestos en .
Suma y .
Suma y .
Resta de .
Step 2
Factoriza de .
Factoriza de .
Factoriza de .
Factoriza de .
Factoriza de .
Factoriza de .
Factoriza por agrupación.
Reordena los términos.
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Factoriza de .
Reescribe como más
Aplica la propiedad distributiva.
Multiplica por .
Factoriza el máximo común divisor de cada grupo.
Agrupa los dos primeros términos y los dos últimos términos.
Factoriza el máximo común divisor (MCD) de cada grupo.
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Reescribe como .
Factoriza.
Factoriza.
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Elimina los paréntesis innecesarios.
Elimina los paréntesis innecesarios.
Step 3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Step 4
Establece igual a .
Resuelve en .
Calcula la raíz cuadrada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Simplifica .
Reescribe como .
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Más o menos es .
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Simplifica el lado derecho.
El valor exacto de es .
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Simplifica .
Para escribir como una fracción con un denominador común, multiplica por .
Combina fracciones.
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Multiplica por .
Resta de .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 5
Establece igual a .
Resuelve en .
Resta de ambos lados de la ecuación.
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
La división de dos valores negativos da como resultado un valor positivo.
Calcula la raíz cuadrada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Simplifica .
Reescribe como .
Cualquier raíz de es .
Multiplica por .
Combina y simplifica el denominador.
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Cancela el factor común.
Reescribe la expresión.
Evalúa el exponente.
La solución completa es el resultado de las partes positiva y negativa de la solución.
Primero, usa el valor positivo de para obtener la primera solución.
Luego, usa el valor negativo de para obtener la segunda solución.
La solución completa es el resultado de las partes positiva y negativa de la solución.
Establece cada una de las soluciones para obtener el valor de .
Resuelve en .
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Simplifica el lado derecho.
El valor exacto de es .
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Simplifica .
Para escribir como una fracción con un denominador común, multiplica por .
Combina fracciones.
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Multiplica por .
Resta de .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Resuelve en .
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Simplifica el lado derecho.
El valor exacto de es .
El coseno es negativo en el segundo y el tercer cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el tercer cuadrante.
Simplifica .
Para escribir como una fracción con un denominador común, multiplica por .
Combina fracciones.
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Multiplica por .
Resta de .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Enumera todas las soluciones.
, para cualquier número entero
Consolida las respuestas.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 6
Establece igual a .
Resuelve en .
Resta de ambos lados de la ecuación.
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Simplifica el lado derecho.
El valor exacto de es .
El coseno es negativo en el segundo y el tercer cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el tercer cuadrante.
Resta de .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 7
Establece igual a .
Resuelve en .
Suma a ambos lados de la ecuación.
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Simplifica el lado derecho.
El valor exacto de es .
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Resta de .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 8
La solución final comprende todos los valores que hacen verdadera.
, para cualquier número entero
Step 9
Consolida y en .
, para cualquier número entero
Consolida y en .
, para cualquier número entero
Consolida y en .
, para cualquier número entero
Consolida y en .
, para cualquier número entero
Consolida y en .
, para cualquier número entero
, para cualquier número entero