Trigonometría Ejemplos

حل من أجل ? 2cos(x)=sec(x)
Step 1
Divide cada término en por y simplifica.
Toca para ver más pasos...
Divide cada término en por .
Simplifica el lado izquierdo.
Toca para ver más pasos...
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica el lado derecho.
Toca para ver más pasos...
Separa las fracciones.
Reescribe en términos de senos y cosenos.
Reescribe como un producto.
Multiplica por .
Simplifica el denominador.
Toca para ver más pasos...
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Combina fracciones.
Toca para ver más pasos...
Combinar.
Multiplica por .
Multiplica por .
Separa las fracciones.
Convierte de a .
Multiplica por .
Combina y .
Step 2
Reescribe la ecuación como .
Step 3
Multiplica ambos lados de la ecuación por .
Step 4
Simplifica ambos lados de la ecuación.
Toca para ver más pasos...
Simplifica el lado izquierdo.
Toca para ver más pasos...
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica el lado derecho.
Toca para ver más pasos...
Multiplica por .
Step 5
Calcula la raíz cuadrada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Step 6
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Primero, usa el valor positivo de para obtener la primera solución.
Luego, usa el valor negativo de para obtener la segunda solución.
La solución completa es el resultado de las partes positiva y negativa de la solución.
Step 7
Establece cada una de las soluciones para obtener el valor de .
Step 8
Resuelve en .
Toca para ver más pasos...
Calcula la inversa de la secante de ambos lados de la ecuación para extraer del interior de la secante.
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
La secante es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Simplifica .
Toca para ver más pasos...
Para escribir como una fracción con un denominador común, multiplica por .
Combina fracciones.
Toca para ver más pasos...
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Toca para ver más pasos...
Multiplica por .
Resta de .
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Step 9
Resuelve en .
Toca para ver más pasos...
Calcula la inversa de la secante de ambos lados de la ecuación para extraer del interior de la secante.
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
La secante es negativa en el segundo y el tercer cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el tercer cuadrante.
Simplifica .
Toca para ver más pasos...
Para escribir como una fracción con un denominador común, multiplica por .
Combina fracciones.
Toca para ver más pasos...
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Toca para ver más pasos...
Multiplica por .
Resta de .
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Step 10
Enumera todas las soluciones.
, para cualquier número entero
Step 11
Consolida las respuestas.
, para cualquier número entero
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información