Ingresa un problema...
Trigonometría Ejemplos
Step 1
Resta de ambos lados de la ecuación.
Step 2
Simplifica cada término.
Aplica la razón del ángulo doble sinusoidal.
Usa la razón del ángulo doble para transformar a .
Combina los términos opuestos en .
Resta de .
Suma y .
Step 3
Factoriza de .
Factoriza de .
Step 4
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Step 5
Establece igual a .
Resuelve en .
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Simplifica el lado derecho.
El valor exacto de es .
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Resta de .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 6
Establece igual a .
Resuelve en .
Divide cada término en la ecuación por .
Cancela el factor común de .
Cancela el factor común.
Reescribe la expresión.
Separa las fracciones.
Convierte de a .
Divide por .
Separa las fracciones.
Convierte de a .
Divide por .
Multiplica por .
Resta de ambos lados de la ecuación.
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
La división de dos valores negativos da como resultado un valor positivo.
Divide por .
Simplifica el lado derecho.
Divide por .
Resta la inversa de la tangente de ambos lados de la ecuación para extraer del interior de la tangente.
Simplifica el lado derecho.
El valor exacto de es .
La función tangente es positiva en el primer y el tercer cuadrante. Para obtener la segunda solución, suma el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Simplifica .
Para escribir como una fracción con un denominador común, multiplica por .
Combina fracciones.
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Mueve a la izquierda de .
Suma y .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 7
La solución final comprende todos los valores que hacen verdadera.
, para cualquier número entero
Step 8
Consolida y en .
, para cualquier número entero
Consolida y en .
, para cualquier número entero
, para cualquier número entero