Trigonometría Ejemplos

Expanda la expresión trigonométrica sec(2arctan(x))
Step 1
Expand sec(2x).
Step 2
Simplifica el denominador.
Toca para ver más pasos...
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Simplifica.
Toca para ver más pasos...
Dibuja un triángulo en el plano con los vértices , y el origen. Entonces es el ángulo entre el eje x positivo y el rayo que comienza en el origen y pasa por . Por lo tanto, es .
Multiplica por .
Combina y simplifica el denominador.
Toca para ver más pasos...
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica.
Dibuja un triángulo en el plano con los vértices , y el origen. Entonces es el ángulo entre el eje x positivo y el rayo que comienza en el origen y pasa por . Por lo tanto, es .
Multiplica por .
Combina y simplifica el denominador.
Toca para ver más pasos...
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica.
Combina los numeradores sobre el denominador común.
Factoriza de .
Toca para ver más pasos...
Multiplica por .
Factoriza de .
Factoriza de .
Dibuja un triángulo en el plano con los vértices , y el origen. Entonces es el ángulo entre el eje x positivo y el rayo que comienza en el origen y pasa por . Por lo tanto, es .
Multiplica por .
Combina y simplifica el denominador.
Toca para ver más pasos...
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica.
Dibuja un triángulo en el plano con los vértices , y el origen. Entonces es el ángulo entre el eje x positivo y el rayo que comienza en el origen y pasa por . Por lo tanto, es .
Multiplica por .
Combina y simplifica el denominador.
Toca para ver más pasos...
Multiplica por .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica.
Combina los numeradores sobre el denominador común.
Factoriza de .
Toca para ver más pasos...
Multiplica por .
Factoriza de .
Factoriza de .
Step 3
Multiplica por .
Step 4
Simplifica el numerador.
Toca para ver más pasos...
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Step 5
Simplifica el denominador.
Toca para ver más pasos...
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Step 6
Simplifica los términos.
Toca para ver más pasos...
Reescribe como .
Toca para ver más pasos...
Usa para reescribir como .
Aplica la regla de la potencia y multiplica los exponentes, .
Combina y .
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Simplifica.
Reduce la expresión mediante la cancelación de los factores comunes.
Toca para ver más pasos...
Factoriza de .
Factoriza de .
Cancela el factor común.
Reescribe la expresión.
Step 7
Multiplica el numerador por la recíproca del denominador.
Step 8
Multiplica por .
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información