Trigonometría Ejemplos

حل من أجل x cos(x)+sin(x)tan(x)=2
Step 1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Simplifica cada término.
Toca para ver más pasos...
Reescribe en términos de senos y cosenos.
Multiplica .
Toca para ver más pasos...
Combina y .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Step 2
Multiplica ambos lados de la ecuación por .
Step 3
Aplica la propiedad distributiva.
Step 4
Multiplica .
Toca para ver más pasos...
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Step 5
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Reescribe la expresión.
Step 6
Reorganiza los términos.
Step 7
Aplica la identidad pitagórica.
Step 8
Mueve a la izquierda de .
Step 9
Reescribe la ecuación como .
Step 10
Divide cada término en por y simplifica.
Toca para ver más pasos...
Divide cada término en por .
Simplifica el lado izquierdo.
Toca para ver más pasos...
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Divide por .
Step 11
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Step 12
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
Step 13
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Step 14
Simplifica .
Toca para ver más pasos...
Para escribir como una fracción con un denominador común, multiplica por .
Combina fracciones.
Toca para ver más pasos...
Combina y .
Combina los numeradores sobre el denominador común.
Simplifica el numerador.
Toca para ver más pasos...
Multiplica por .
Resta de .
Step 15
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
Step 16
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información