Trigonometría Ejemplos

حل من أجل θ بالدرجة 9cos(theta)^2-24sin(theta)-10=-8sin(theta)+6
Step 1
Mueve todas las expresiones al lado izquierdo de la ecuación.
Toca para ver más pasos...
Suma a ambos lados de la ecuación.
Resta de ambos lados de la ecuación.
Step 2
Simplifica .
Toca para ver más pasos...
Suma y .
Resta de .
Step 3
Reemplaza con según la identidad de .
Step 4
Simplifica cada término.
Toca para ver más pasos...
Aplica la propiedad distributiva.
Multiplica por .
Multiplica por .
Step 5
Resta de .
Step 6
Reordena el polinomio.
Step 7
Sustituye por .
Step 8
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Factoriza de .
Toca para ver más pasos...
Factoriza de .
Factoriza de .
Reescribe como .
Factoriza de .
Factoriza de .
Factoriza.
Toca para ver más pasos...
Factoriza por agrupación.
Toca para ver más pasos...
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Factoriza de .
Reescribe como más
Aplica la propiedad distributiva.
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Agrupa los dos primeros términos y los dos últimos términos.
Factoriza el máximo común divisor (MCD) de cada grupo.
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Elimina los paréntesis innecesarios.
Step 9
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Step 10
Establece igual a y resuelve .
Toca para ver más pasos...
Establece igual a .
Resuelve en .
Toca para ver más pasos...
Resta de ambos lados de la ecuación.
Divide cada término en por y simplifica.
Toca para ver más pasos...
Divide cada término en por .
Simplifica el lado izquierdo.
Toca para ver más pasos...
Cancela el factor común de .
Toca para ver más pasos...
Cancela el factor común.
Divide por .
Simplifica el lado derecho.
Toca para ver más pasos...
Mueve el negativo al frente de la fracción.
Step 11
Establece igual a y resuelve .
Toca para ver más pasos...
Establece igual a .
Resta de ambos lados de la ecuación.
Step 12
La solución final comprende todos los valores que hacen verdadera.
Step 13
Sustituye por .
Step 14
Establece cada una de las soluciones para obtener el valor de .
Step 15
Resuelve en .
Toca para ver más pasos...
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Simplifica el lado derecho.
Toca para ver más pasos...
Evalúa .
La función seno es negativa en el tercer y el cuarto cuadrante. Para obtener la segunda solución, resta la solución de para obtener un ángulo de referencia. A continuación, suma este ángulo de referencia a para obtener la solución en el tercer cuadrante.
Simplifica la expresión para obtener la segunda solución.
Toca para ver más pasos...
Resta de .
El ángulo resultante de es positivo, menor que y coterminal con .
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
Suma a todos los ángulos negativos para obtener ángulos positivos.
Toca para ver más pasos...
Suma y para obtener el ángulo positivo.
Resta de .
Enumera los nuevos ángulos.
El período de la función es , por lo que los valores se repetirán cada grados en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Step 16
Resuelve en .
Toca para ver más pasos...
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
La función seno es negativa en el tercer y el cuarto cuadrante. Para obtener la segunda solución, resta la solución de para obtener un ángulo de referencia. A continuación, suma este ángulo de referencia a para obtener la solución en el tercer cuadrante.
Simplifica la expresión para obtener la segunda solución.
Toca para ver más pasos...
Resta de .
El ángulo resultante de es positivo, menor que y coterminal con .
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
Suma a todos los ángulos negativos para obtener ángulos positivos.
Toca para ver más pasos...
Suma y para obtener el ángulo positivo.
Resta de .
Enumera los nuevos ángulos.
El período de la función es , por lo que los valores se repetirán cada grados en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Step 17
Enumera todas las soluciones.
, para cualquier número entero
Step 18
Consolida y en .
, para cualquier número entero
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información