Ingresa un problema...
Trigonometría Ejemplos
Step 1
Simplifica cada término.
Reescribe en términos de senos y cosenos.
Multiplica .
Combina y .
Combina y .
Eleva a la potencia de .
Eleva a la potencia de .
Usa la regla de la potencia para combinar exponentes.
Suma y .
Reescribe en términos de senos y cosenos.
Combina y .
Mueve el negativo al frente de la fracción.
Simplifica cada término.
Factoriza de .
Separa las fracciones.
Convierte de a .
Divide por .
Separa las fracciones.
Convierte de a .
Divide por .
Multiplica por .
Step 2
Factoriza de .
Factoriza de .
Factoriza de .
Step 3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Step 4
Establece igual a .
Resuelve en .
Resta la inversa de la tangente de ambos lados de la ecuación para extraer del interior de la tangente.
Simplifica el lado derecho.
El valor exacto de es .
La función tangente es positiva en el primer y el tercer cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Suma y .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada grados en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 5
Establece igual a .
Resuelve en .
Suma a ambos lados de la ecuación.
Divide cada término en por y simplifica.
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Simplifica el lado derecho.
Evalúa .
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Resta de .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada grados en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 6
La solución final comprende todos los valores que hacen verdadera.
, para cualquier número entero
Step 7
Consolida y en .
, para cualquier número entero