Trigonometría Ejemplos

حل من أجل θ بالدرجة cos(theta)^2+cos(theta)=0
Step 1
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Sea . Sustituye por todos los casos de .
Factoriza de .
Toca para ver más pasos...
Factoriza de .
Eleva a la potencia de .
Factoriza de .
Factoriza de .
Reemplaza todos los casos de con .
Step 2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Step 3
Establece igual a y resuelve .
Toca para ver más pasos...
Establece igual a .
Resuelve en .
Toca para ver más pasos...
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Resta de .
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada grados en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 4
Establece igual a y resuelve .
Toca para ver más pasos...
Establece igual a .
Resuelve en .
Toca para ver más pasos...
Resta de ambos lados de la ecuación.
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Simplifica el lado derecho.
Toca para ver más pasos...
El valor exacto de es .
El coseno es negativo en el segundo y el tercer cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el tercer cuadrante.
Resta de .
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada grados en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Step 5
La solución final comprende todos los valores que hacen verdadera.
, para cualquier número entero
Step 6
Consolida y en .
, para cualquier número entero
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información