Trigonometría Ejemplos

حل من أجل x بالدرجة 3sin(x)^2-sin(x)=1
Step 1
Sustituye por .
Step 2
Resta de ambos lados de la ecuación.
Step 3
Usa la fórmula cuadrática para obtener las soluciones.
Step 4
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Step 5
Simplifica.
Toca para ver más pasos...
Simplifica el numerador.
Toca para ver más pasos...
Eleva a la potencia de .
Multiplica .
Toca para ver más pasos...
Multiplica por .
Multiplica por .
Suma y .
Multiplica por .
Step 6
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Simplifica el numerador.
Toca para ver más pasos...
Eleva a la potencia de .
Multiplica .
Toca para ver más pasos...
Multiplica por .
Multiplica por .
Suma y .
Multiplica por .
Cambia a .
Step 7
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Simplifica el numerador.
Toca para ver más pasos...
Eleva a la potencia de .
Multiplica .
Toca para ver más pasos...
Multiplica por .
Multiplica por .
Suma y .
Multiplica por .
Cambia a .
Step 8
La respuesta final es la combinación de ambas soluciones.
Step 9
Sustituye por .
Step 10
Establece cada una de las soluciones para obtener el valor de .
Step 11
Resuelve en .
Toca para ver más pasos...
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Simplifica el lado derecho.
Toca para ver más pasos...
Evalúa .
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Resta de .
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada grados en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Step 12
Resuelve en .
Toca para ver más pasos...
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Simplifica el lado derecho.
Toca para ver más pasos...
Evalúa .
La función seno es positiva en el primer y el segundo cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el segundo cuadrante.
Suma y .
Obtén el período de .
Toca para ver más pasos...
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
Suma a todos los ángulos negativos para obtener ángulos positivos.
Toca para ver más pasos...
Suma y para obtener el ángulo positivo.
Resta de .
Enumera los nuevos ángulos.
El período de la función es , por lo que los valores se repetirán cada grados en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Step 13
Enumera todas las soluciones.
, para cualquier número entero
Política de privacidad y cookies
Este sitio web utiliza cookies para mejorar tu experiencia.
Más información