Ingresa un problema...
Trigonometría Ejemplos
Step 1
Suma a ambos lados de la ecuación.
Step 2
Divide cada término en por .
Simplifica el lado izquierdo.
Cancela el factor común de .
Cancela el factor común.
Divide por .
Step 3
Calcula la raíz cuadrada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Step 4
Reescribe como .
Cualquier raíz de es .
Simplifica el denominador.
Reescribe como .
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Step 5
Primero, usa el valor positivo de para obtener la primera solución.
Luego, usa el valor negativo de para obtener la segunda solución.
La solución completa es el resultado de las partes positiva y negativa de la solución.
Step 6
Establece cada una de las soluciones para obtener el valor de .
Step 7
Resta la inversa de la cotangente de ambos lados de la ecuación para extraer del interior de la cotangente.
Simplifica el lado derecho.
Evalúa .
La función cotangente es positiva en el primer y el tercer cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Suma y .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada grados en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Step 8
Resta la inversa de la cotangente de ambos lados de la ecuación para extraer del interior de la cotangente.
Simplifica el lado derecho.
Evalúa .
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Simplifica la expresión para obtener la segunda solución.
Suma a .
El ángulo resultante de es positivo y coterminal con .
Obtén el período de .
El período de la función puede calcularse mediante .
Reemplaza con en la fórmula para el período.
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Divide por .
El período de la función es , por lo que los valores se repetirán cada grados en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Step 9
Enumera todas las soluciones.
, para cualquier número entero
Step 10
Consolida y en .
, para cualquier número entero
Consolida y en .
, para cualquier número entero
, para cualquier número entero