Precálculo Ejemplos

Resolver el triángulo tri()(85 grados )()()(7)(52 grados )
Paso 1
El teorema de los senos se basa en la proporcionalidad de los lados y ángulos de los triángulos. Según este teorema, en el caso de un triángulo no rectángulo, cada ángulo del triángulo tiene la misma razón de medida que el valor de seno.
Paso 2
Sustituye los valores conocidos en el teorema de los senos para obtener .
Paso 3
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 3.1
Factoriza cada término.
Toca para ver más pasos...
Paso 3.1.1
Evalúa .
Paso 3.1.2
Evalúa .
Paso 3.1.3
Divide por .
Paso 3.2
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 3.2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 3.2.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 3.3
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 3.3.1
Multiplica cada término en por .
Paso 3.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.3.2.1.1
Cancela el factor común.
Paso 3.3.2.1.2
Reescribe la expresión.
Paso 3.4
Resuelve la ecuación.
Toca para ver más pasos...
Paso 3.4.1
Reescribe la ecuación como .
Paso 3.4.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.4.2.1
Divide cada término en por .
Paso 3.4.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.4.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.4.2.2.1.1
Cancela el factor común.
Paso 3.4.2.2.1.2
Divide por .
Paso 3.4.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.4.2.3.1
Divide por .
Paso 4
La suma de todos los ángulos de un triángulo es grados.
Paso 5
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 5.1
Suma y .
Paso 5.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 5.2.1
Resta de ambos lados de la ecuación.
Paso 5.2.2
Resta de .
Paso 6
El teorema de los senos se basa en la proporcionalidad de los lados y ángulos de los triángulos. Según este teorema, en el caso de un triángulo no rectángulo, cada ángulo del triángulo tiene la misma razón de medida que el valor de seno.
Paso 7
Sustituye los valores conocidos en el teorema de los senos para obtener .
Paso 8
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 8.1
Factoriza cada término.
Toca para ver más pasos...
Paso 8.1.1
Evalúa .
Paso 8.1.2
Evalúa .
Paso 8.1.3
Divide por .
Paso 8.2
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 8.2.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 8.2.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 8.3
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 8.3.1
Multiplica cada término en por .
Paso 8.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 8.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 8.3.2.1.1
Cancela el factor común.
Paso 8.3.2.1.2
Reescribe la expresión.
Paso 8.4
Resuelve la ecuación.
Toca para ver más pasos...
Paso 8.4.1
Reescribe la ecuación como .
Paso 8.4.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 8.4.2.1
Divide cada término en por .
Paso 8.4.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 8.4.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 8.4.2.2.1.1
Cancela el factor común.
Paso 8.4.2.2.1.2
Divide por .
Paso 8.4.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 8.4.2.3.1
Divide por .
Paso 9
Estos son los resultados de todos los ángulos y lados del triángulo dado.