Precálculo Ejemplos

Encontrar el dominio ( raíz cuadrada de x^2-16)/((x^2)/(x^2+1))
Paso 1
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 2
Resuelve
Toca para ver más pasos...
Paso 2.1
Suma a ambos lados de la desigualdad.
Paso 2.2
Calcula la raíz especificada de ambos lados de la desigualdad para eliminar el exponente en el lado izquierdo.
Paso 2.3
Simplifica la ecuación.
Toca para ver más pasos...
Paso 2.3.1
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.3.1.1
Retira los términos de abajo del radical.
Paso 2.3.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.2.1
Simplifica .
Toca para ver más pasos...
Paso 2.3.2.1.1
Reescribe como .
Paso 2.3.2.1.2
Retira los términos de abajo del radical.
Paso 2.3.2.1.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 2.4
Escribe como una función definida por partes.
Toca para ver más pasos...
Paso 2.4.1
Para obtener el intervalo de la primera parte, obtén dónde el interior del valor absoluto no es negativo.
Paso 2.4.2
En la parte donde no es negativa, elimina el valor absoluto.
Paso 2.4.3
Para obtener el intervalo de la segunda parte, obtén dónde el interior del valor absoluto es negativo.
Paso 2.4.4
En la parte donde es negativa, elimina el valor absoluto y multiplica por .
Paso 2.4.5
Escribe como una función definida por partes.
Paso 2.5
Obtén la intersección de y .
Paso 2.6
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.6.1
Divide cada término de por . Cuando multipliques o dividas ambos lados de una desigualdad por un valor negativo, cambia la dirección del signo de desigualdad.
Paso 2.6.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.6.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.6.2.2
Divide por .
Paso 2.6.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.6.3.1
Divide por .
Paso 2.7
Obtén la unión de las soluciones.
o
o
Paso 3
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 4
Resuelve
Toca para ver más pasos...
Paso 4.1
Resta de ambos lados de la ecuación.
Paso 4.2
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 4.3
Reescribe como .
Paso 4.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 4.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 4.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 4.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 5
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 6
Resuelve
Toca para ver más pasos...
Paso 6.1
Establece el numerador igual a cero.
Paso 6.2
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 6.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 6.2.2
Simplifica .
Toca para ver más pasos...
Paso 6.2.2.1
Reescribe como .
Paso 6.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 6.2.2.3
Más o menos es .
Paso 7
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 8