Precálculo Ejemplos

Hallar el centro x^2+6x+4y+5=0
Paso 1
Reescribe la ecuación en forma de vértice.
Toca para ver más pasos...
Paso 1.1
Aísla al lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 1.1.1
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 1.1.1.1
Resta de ambos lados de la ecuación.
Paso 1.1.1.2
Resta de ambos lados de la ecuación.
Paso 1.1.1.3
Resta de ambos lados de la ecuación.
Paso 1.1.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.1.2.1
Divide cada término en por .
Paso 1.1.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.1.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.1.2.2.1.1
Cancela el factor común.
Paso 1.1.2.2.1.2
Divide por .
Paso 1.1.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.1.2.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1.2.3.1.1
Mueve el negativo al frente de la fracción.
Paso 1.1.2.3.1.2
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.1.2.3.1.2.1
Factoriza de .
Paso 1.1.2.3.1.2.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.1.2.3.1.2.2.1
Factoriza de .
Paso 1.1.2.3.1.2.2.2
Cancela el factor común.
Paso 1.1.2.3.1.2.2.3
Reescribe la expresión.
Paso 1.1.2.3.1.3
Mueve el negativo al frente de la fracción.
Paso 1.1.2.3.1.4
Mueve el negativo al frente de la fracción.
Paso 1.2
Completa el cuadrado de .
Toca para ver más pasos...
Paso 1.2.1
Usa la forma , para obtener los valores de , y .
Paso 1.2.2
Considera la forma de vértice de una parábola.
Paso 1.2.3
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 1.2.3.1
Sustituye los valores de y en la fórmula .
Paso 1.2.3.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.3.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 1.2.3.2.2
Multiplica el numerador por la recíproca del denominador.
Paso 1.2.3.2.3
Combina y .
Paso 1.2.3.2.4
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.2.3.2.4.1
Factoriza de .
Paso 1.2.3.2.4.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.2.3.2.4.2.1
Factoriza de .
Paso 1.2.3.2.4.2.2
Cancela el factor común.
Paso 1.2.3.2.4.2.3
Reescribe la expresión.
Paso 1.2.3.2.5
Multiplica el numerador por la recíproca del denominador.
Paso 1.2.3.2.6
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.3.2.6.1
Factoriza de .
Paso 1.2.3.2.6.2
Cancela el factor común.
Paso 1.2.3.2.6.3
Reescribe la expresión.
Paso 1.2.4
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 1.2.4.1
Sustituye los valores de , y en la fórmula .
Paso 1.2.4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.4.2.1.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 1.2.4.2.1.1.1
Aplica la regla del producto a .
Paso 1.2.4.2.1.1.2
Eleva a la potencia de .
Paso 1.2.4.2.1.1.3
Aplica la regla del producto a .
Paso 1.2.4.2.1.1.4
Eleva a la potencia de .
Paso 1.2.4.2.1.1.5
Eleva a la potencia de .
Paso 1.2.4.2.1.1.6
Multiplica por .
Paso 1.2.4.2.1.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 1.2.4.2.1.2.1
Multiplica por .
Paso 1.2.4.2.1.2.2
Combina y .
Paso 1.2.4.2.1.3
Divide por .
Paso 1.2.4.2.1.4
Mueve el negativo del denominador de .
Paso 1.2.4.2.1.5
Reescribe como .
Paso 1.2.4.2.1.6
Multiplica .
Toca para ver más pasos...
Paso 1.2.4.2.1.6.1
Multiplica por .
Paso 1.2.4.2.1.6.2
Multiplica por .
Paso 1.2.4.2.2
Combina los numeradores sobre el denominador común.
Paso 1.2.4.2.3
Suma y .
Paso 1.2.4.2.4
Divide por .
Paso 1.2.5
Sustituye los valores de , y en la forma de vértice .
Paso 1.3
Establece igual al nuevo lado derecho.
Paso 2
Usa la forma de vértice, , para determinar los valores de , y .
Paso 3
Como el valor de es negativo, la parábola se abre hacia abajo.
Abre hacia abajo
Paso 4
Obtén el vértice .
Paso 5
Obtén , la distancia desde el vértice hasta el foco.
Toca para ver más pasos...
Paso 5.1
Obtén la distancia desde el vértice hasta un foco de la parábola con la siguiente fórmula.
Paso 5.2
Sustituye el valor de en la fórmula.
Paso 5.3
Simplifica.
Toca para ver más pasos...
Paso 5.3.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 5.3.1.1
Reescribe como .
Paso 5.3.1.2
Mueve el negativo al frente de la fracción.
Paso 5.3.2
Combina y .
Paso 5.3.3
Divide por .
Paso 5.3.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.3.4.1
Cancela el factor común.
Paso 5.3.4.2
Reescribe la expresión.
Paso 5.3.5
Multiplica por .
Paso 6
Obtén el foco.
Toca para ver más pasos...
Paso 6.1
El foco de una parábola puede obtenerse al sumar a la coordenada y si la parábola abre hacia arriba o hacia abajo.
Paso 6.2
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 7
Obtén el eje de simetría mediante la obtención de la línea que pasa por el vértice y el foco.
Paso 8
Obtén la directriz.
Toca para ver más pasos...
Paso 8.1
La directriz de una parábola es la recta horizontal que se obtiene al restar de la coordenada y del vértice si la parábola abre hacia arriba o hacia abajo.
Paso 8.2
Sustituye los valores conocidos de y en la fórmula y simplifica.
Paso 9
Usa las propiedades de la parábola para analizar y graficar la parábola.
Dirección: abre hacia abajo
Vértice:
Foco:
Eje de simetría:
Directriz:
Paso 10