Ingresa un problema...
Precálculo Ejemplos
Paso 1
Resta de ambos lados de la desigualdad.
Paso 2
Paso 2.1
Factoriza con el método AC.
Paso 2.1.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 2.1.2
Escribe la forma factorizada mediante estos números enteros.
Paso 2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.3
Multiplica por .
Paso 2.4
Combina los numeradores sobre el denominador común.
Paso 2.5
Simplifica el numerador.
Paso 2.5.1
Aplica la propiedad distributiva.
Paso 2.5.2
Multiplica por .
Paso 2.5.3
Resta de .
Paso 2.5.4
Suma y .
Paso 2.6
Factoriza de .
Paso 2.7
Reescribe como .
Paso 2.8
Factoriza de .
Paso 2.9
Reescribe como .
Paso 2.10
Mueve el negativo al frente de la fracción.
Paso 3
Obtén todos los valores donde la expresión cambia de negativa a positiva mediante la definición de cada factor igual a y la resolución.
Paso 4
Suma a ambos lados de la ecuación.
Paso 5
Suma a ambos lados de la ecuación.
Paso 6
Suma a ambos lados de la ecuación.
Paso 7
Resuelve cada factor para obtener los valores donde la expresión de valor absoluto va de positiva a negativa.
Paso 8
Consolida las soluciones.
Paso 9
Paso 9.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 9.2
Resuelve
Paso 9.2.1
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 9.2.2
Establece igual a y resuelve .
Paso 9.2.2.1
Establece igual a .
Paso 9.2.2.2
Suma a ambos lados de la ecuación.
Paso 9.2.3
Establece igual a y resuelve .
Paso 9.2.3.1
Establece igual a .
Paso 9.2.3.2
Suma a ambos lados de la ecuación.
Paso 9.2.4
La solución final comprende todos los valores que hacen verdadera.
Paso 9.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 10
Usa cada raíz para crear intervalos de prueba.
Paso 11
Paso 11.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 11.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 11.1.2
Reemplaza con en la desigualdad original.
Paso 11.1.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 11.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 11.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 11.2.2
Reemplaza con en la desigualdad original.
Paso 11.2.3
del lado izquierdo no es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 11.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 11.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 11.3.2
Reemplaza con en la desigualdad original.
Paso 11.3.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 11.4
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 11.4.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 11.4.2
Reemplaza con en la desigualdad original.
Paso 11.4.3
del lado izquierdo no es mayor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 11.5
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Verdadero
Falso
Verdadero
Falso
Verdadero
Falso
Verdadero
Falso
Paso 12
La solución consiste en todos los intervalos verdaderos.
o
Paso 13
Convierte la desigualdad a notación de intervalo.
Paso 14