Precálculo Ejemplos

Hallar todas las soluciones complejas z^4=81i
Paso 1
Sustituye por .
Paso 2
Esta es la forma trigonométrica de un número complejo donde es el módulo y es el ángulo creado en el plano complejo.
Paso 3
El módulo de un número complejo es la distancia desde el origen en el plano complejo.
donde
Paso 4
Sustituye los valores reales de y .
Paso 5
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 6
El ángulo del punto en el plano complejo es la inversa de la tangente de la parte compleja en la parte real.
Paso 7
Como el argumento es indefinido y es positiva, el ángulo del punto en el plano complejo es .
Paso 8
Sustituye los valores de y .
Paso 9
Reemplaza el lado derecho de la ecuación con la forma trigonométrica.
Paso 10
Usa el teorema de DeMoivre para obtener una ecuación para .
Paso 11
Iguala el módulo de la forma trigonométrica a para obtener el valor de .
Paso 12
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 12.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 12.2
Simplifica .
Toca para ver más pasos...
Paso 12.2.1
Reescribe como .
Paso 12.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 12.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 12.3.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 12.3.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 12.3.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 13
Obtén el valor aproximado de .
Paso 14
Obtén los posibles valores de .
y
Paso 15
Obtención de todos los valores posibles de conduce a la ecuación .
Paso 16
Obtén el valor de para .
Paso 17
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 17.1
Simplifica.
Toca para ver más pasos...
Paso 17.1.1
Multiplica .
Toca para ver más pasos...
Paso 17.1.1.1
Multiplica por .
Paso 17.1.1.2
Multiplica por .
Paso 17.1.2
Suma y .
Paso 17.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 17.2.1
Divide cada término en por .
Paso 17.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 17.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 17.2.2.1.1
Cancela el factor común.
Paso 17.2.2.1.2
Divide por .
Paso 17.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 17.2.3.1
Multiplica el numerador por la recíproca del denominador.
Paso 17.2.3.2
Multiplica .
Toca para ver más pasos...
Paso 17.2.3.2.1
Multiplica por .
Paso 17.2.3.2.2
Multiplica por .
Paso 18
Usa los valores de y para obtener una solución para la ecuación .
Paso 19
Convierte la solución a forma rectangular.
Toca para ver más pasos...
Paso 19.1
Simplifica cada término.
Toca para ver más pasos...
Paso 19.1.1
El valor exacto de es .
Toca para ver más pasos...
Paso 19.1.1.1
Reescribe como un ángulo donde se conozcan los valores de las seis funciones trigonométricas dividido por .
Paso 19.1.1.2
Aplica la razón del ángulo mitad del coseno .
Paso 19.1.1.3
Cambia por porque el coseno es positivo en el primer cuadrante.
Paso 19.1.1.4
El valor exacto de es .
Paso 19.1.1.5
Simplifica .
Toca para ver más pasos...
Paso 19.1.1.5.1
Escribe como una fracción con un denominador común.
Paso 19.1.1.5.2
Combina los numeradores sobre el denominador común.
Paso 19.1.1.5.3
Multiplica el numerador por la recíproca del denominador.
Paso 19.1.1.5.4
Multiplica .
Toca para ver más pasos...
Paso 19.1.1.5.4.1
Multiplica por .
Paso 19.1.1.5.4.2
Multiplica por .
Paso 19.1.1.5.5
Reescribe como .
Paso 19.1.1.5.6
Simplifica el denominador.
Toca para ver más pasos...
Paso 19.1.1.5.6.1
Reescribe como .
Paso 19.1.1.5.6.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 19.1.2
El valor exacto de es .
Toca para ver más pasos...
Paso 19.1.2.1
Reescribe como un ángulo donde se conozcan los valores de las seis funciones trigonométricas dividido por .
Paso 19.1.2.2
Aplica la razón del ángulo mitad del seno.
Paso 19.1.2.3
Cambia por porque el seno es positivo en el primer cuadrante.
Paso 19.1.2.4
Simplifica .
Toca para ver más pasos...
Paso 19.1.2.4.1
El valor exacto de es .
Paso 19.1.2.4.2
Escribe como una fracción con un denominador común.
Paso 19.1.2.4.3
Combina los numeradores sobre el denominador común.
Paso 19.1.2.4.4
Multiplica el numerador por la recíproca del denominador.
Paso 19.1.2.4.5
Multiplica .
Toca para ver más pasos...
Paso 19.1.2.4.5.1
Multiplica por .
Paso 19.1.2.4.5.2
Multiplica por .
Paso 19.1.2.4.6
Reescribe como .
Paso 19.1.2.4.7
Simplifica el denominador.
Toca para ver más pasos...
Paso 19.1.2.4.7.1
Reescribe como .
Paso 19.1.2.4.7.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 19.1.3
Combina y .
Paso 19.2
Combina fracciones.
Toca para ver más pasos...
Paso 19.2.1
Combina los numeradores sobre el denominador común.
Paso 19.2.2
Combina y .
Paso 20
Sustituye por para calcular el valor de tras el desplazamiento a la derecha.
Paso 21
Obtén el valor de para .
Paso 22
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 22.1
Simplifica.
Toca para ver más pasos...
Paso 22.1.1
Multiplica por .
Paso 22.1.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 22.1.3
Combina y .
Paso 22.1.4
Combina los numeradores sobre el denominador común.
Paso 22.1.5
Multiplica por .
Paso 22.1.6
Suma y .
Paso 22.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 22.2.1
Divide cada término en por .
Paso 22.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 22.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 22.2.2.1.1
Cancela el factor común.
Paso 22.2.2.1.2
Divide por .
Paso 22.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 22.2.3.1
Multiplica el numerador por la recíproca del denominador.
Paso 22.2.3.2
Multiplica .
Toca para ver más pasos...
Paso 22.2.3.2.1
Multiplica por .
Paso 22.2.3.2.2
Multiplica por .
Paso 23
Usa los valores de y para obtener una solución para la ecuación .
Paso 24
Convierte la solución a forma rectangular.
Toca para ver más pasos...
Paso 24.1
Simplifica cada término.
Toca para ver más pasos...
Paso 24.1.1
El valor exacto de es .
Toca para ver más pasos...
Paso 24.1.1.1
Reescribe como un ángulo donde se conozcan los valores de las seis funciones trigonométricas dividido por .
Paso 24.1.1.2
Aplica la razón del ángulo mitad del coseno .
Paso 24.1.1.3
Cambia por porque el coseno es negativo en el segundo cuadrante.
Paso 24.1.1.4
Simplifica .
Toca para ver más pasos...
Paso 24.1.1.4.1
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque el coseno es negativo en el tercer cuadrante.
Paso 24.1.1.4.2
El valor exacto de es .
Paso 24.1.1.4.3
Escribe como una fracción con un denominador común.
Paso 24.1.1.4.4
Combina los numeradores sobre el denominador común.
Paso 24.1.1.4.5
Multiplica el numerador por la recíproca del denominador.
Paso 24.1.1.4.6
Multiplica .
Toca para ver más pasos...
Paso 24.1.1.4.6.1
Multiplica por .
Paso 24.1.1.4.6.2
Multiplica por .
Paso 24.1.1.4.7
Reescribe como .
Paso 24.1.1.4.8
Simplifica el denominador.
Toca para ver más pasos...
Paso 24.1.1.4.8.1
Reescribe como .
Paso 24.1.1.4.8.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 24.1.2
El valor exacto de es .
Toca para ver más pasos...
Paso 24.1.2.1
Reescribe como un ángulo donde se conozcan los valores de las seis funciones trigonométricas dividido por .
Paso 24.1.2.2
Aplica la razón del ángulo mitad del seno.
Paso 24.1.2.3
Cambia por porque el seno es positivo en el segundo cuadrante.
Paso 24.1.2.4
Simplifica .
Toca para ver más pasos...
Paso 24.1.2.4.1
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque el coseno es negativo en el tercer cuadrante.
Paso 24.1.2.4.2
El valor exacto de es .
Paso 24.1.2.4.3
Multiplica .
Toca para ver más pasos...
Paso 24.1.2.4.3.1
Multiplica por .
Paso 24.1.2.4.3.2
Multiplica por .
Paso 24.1.2.4.4
Escribe como una fracción con un denominador común.
Paso 24.1.2.4.5
Combina los numeradores sobre el denominador común.
Paso 24.1.2.4.6
Multiplica el numerador por la recíproca del denominador.
Paso 24.1.2.4.7
Multiplica .
Toca para ver más pasos...
Paso 24.1.2.4.7.1
Multiplica por .
Paso 24.1.2.4.7.2
Multiplica por .
Paso 24.1.2.4.8
Reescribe como .
Paso 24.1.2.4.9
Simplifica el denominador.
Toca para ver más pasos...
Paso 24.1.2.4.9.1
Reescribe como .
Paso 24.1.2.4.9.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 24.1.3
Combina y .
Paso 24.2
Simplifica los términos.
Toca para ver más pasos...
Paso 24.2.1
Combina los numeradores sobre el denominador común.
Paso 24.2.2
Combina y .
Paso 24.2.3
Factoriza de .
Paso 24.2.4
Factoriza de .
Paso 24.2.5
Factoriza de .
Paso 24.2.6
Simplifica la expresión.
Toca para ver más pasos...
Paso 24.2.6.1
Reescribe como .
Paso 24.2.6.2
Mueve el negativo al frente de la fracción.
Paso 25
Sustituye por para calcular el valor de tras el desplazamiento a la derecha.
Paso 26
Obtén el valor de para .
Paso 27
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 27.1
Simplifica.
Toca para ver más pasos...
Paso 27.1.1
Multiplica por .
Paso 27.1.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 27.1.3
Combina y .
Paso 27.1.4
Combina los numeradores sobre el denominador común.
Paso 27.1.5
Multiplica por .
Paso 27.1.6
Suma y .
Paso 27.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 27.2.1
Divide cada término en por .
Paso 27.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 27.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 27.2.2.1.1
Cancela el factor común.
Paso 27.2.2.1.2
Divide por .
Paso 27.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 27.2.3.1
Multiplica el numerador por la recíproca del denominador.
Paso 27.2.3.2
Multiplica .
Toca para ver más pasos...
Paso 27.2.3.2.1
Multiplica por .
Paso 27.2.3.2.2
Multiplica por .
Paso 28
Usa los valores de y para obtener una solución para la ecuación .
Paso 29
Convierte la solución a forma rectangular.
Toca para ver más pasos...
Paso 29.1
Simplifica cada término.
Toca para ver más pasos...
Paso 29.1.1
El valor exacto de es .
Toca para ver más pasos...
Paso 29.1.1.1
Reescribe como un ángulo donde se conozcan los valores de las seis funciones trigonométricas dividido por .
Paso 29.1.1.2
Aplica la razón del ángulo mitad del coseno .
Paso 29.1.1.3
Cambia por porque el coseno es negativo en el tercer cuadrante.
Paso 29.1.1.4
Simplifica .
Toca para ver más pasos...
Paso 29.1.1.4.1
Resta las rotaciones completas de hasta que el ángulo sea mayor o igual que y menor que .
Paso 29.1.1.4.2
El valor exacto de es .
Paso 29.1.1.4.3
Escribe como una fracción con un denominador común.
Paso 29.1.1.4.4
Combina los numeradores sobre el denominador común.
Paso 29.1.1.4.5
Multiplica el numerador por la recíproca del denominador.
Paso 29.1.1.4.6
Multiplica .
Toca para ver más pasos...
Paso 29.1.1.4.6.1
Multiplica por .
Paso 29.1.1.4.6.2
Multiplica por .
Paso 29.1.1.4.7
Reescribe como .
Paso 29.1.1.4.8
Simplifica el denominador.
Toca para ver más pasos...
Paso 29.1.1.4.8.1
Reescribe como .
Paso 29.1.1.4.8.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 29.1.2
El valor exacto de es .
Toca para ver más pasos...
Paso 29.1.2.1
Reescribe como un ángulo donde se conozcan los valores de las seis funciones trigonométricas dividido por .
Paso 29.1.2.2
Aplica la razón del ángulo mitad del seno.
Paso 29.1.2.3
Cambia por porque el seno es negativo en el tercer cuadrante.
Paso 29.1.2.4
Simplifica .
Toca para ver más pasos...
Paso 29.1.2.4.1
Resta las rotaciones completas de hasta que el ángulo sea mayor o igual que y menor que .
Paso 29.1.2.4.2
El valor exacto de es .
Paso 29.1.2.4.3
Escribe como una fracción con un denominador común.
Paso 29.1.2.4.4
Combina los numeradores sobre el denominador común.
Paso 29.1.2.4.5
Multiplica el numerador por la recíproca del denominador.
Paso 29.1.2.4.6
Multiplica .
Toca para ver más pasos...
Paso 29.1.2.4.6.1
Multiplica por .
Paso 29.1.2.4.6.2
Multiplica por .
Paso 29.1.2.4.7
Reescribe como .
Paso 29.1.2.4.8
Simplifica el denominador.
Toca para ver más pasos...
Paso 29.1.2.4.8.1
Reescribe como .
Paso 29.1.2.4.8.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 29.1.3
Combina y .
Paso 29.2
Simplifica los términos.
Toca para ver más pasos...
Paso 29.2.1
Combina los numeradores sobre el denominador común.
Paso 29.2.2
Combina y .
Paso 29.2.3
Factoriza de .
Paso 29.2.4
Factoriza de .
Paso 29.2.5
Factoriza de .
Paso 29.2.6
Simplifica la expresión.
Toca para ver más pasos...
Paso 29.2.6.1
Reescribe como .
Paso 29.2.6.2
Mueve el negativo al frente de la fracción.
Paso 30
Sustituye por para calcular el valor de tras el desplazamiento a la derecha.
Paso 31
Obtén el valor de para .
Paso 32
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 32.1
Simplifica.
Toca para ver más pasos...
Paso 32.1.1
Multiplica por .
Paso 32.1.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 32.1.3
Combina y .
Paso 32.1.4
Combina los numeradores sobre el denominador común.
Paso 32.1.5
Multiplica por .
Paso 32.1.6
Suma y .
Paso 32.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 32.2.1
Divide cada término en por .
Paso 32.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 32.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 32.2.2.1.1
Cancela el factor común.
Paso 32.2.2.1.2
Divide por .
Paso 32.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 32.2.3.1
Multiplica el numerador por la recíproca del denominador.
Paso 32.2.3.2
Multiplica .
Toca para ver más pasos...
Paso 32.2.3.2.1
Multiplica por .
Paso 32.2.3.2.2
Multiplica por .
Paso 33
Usa los valores de y para obtener una solución para la ecuación .
Paso 34
Convierte la solución a forma rectangular.
Toca para ver más pasos...
Paso 34.1
Simplifica cada término.
Toca para ver más pasos...
Paso 34.1.1
El valor exacto de es .
Toca para ver más pasos...
Paso 34.1.1.1
Reescribe como un ángulo donde se conozcan los valores de las seis funciones trigonométricas dividido por .
Paso 34.1.1.2
Aplica la razón del ángulo mitad del coseno .
Paso 34.1.1.3
Cambia por porque el coseno es positivo en el cuarto cuadrante.
Paso 34.1.1.4
Simplifica .
Toca para ver más pasos...
Paso 34.1.1.4.1
Resta las rotaciones completas de hasta que el ángulo sea mayor o igual que y menor que .
Paso 34.1.1.4.2
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque el coseno es negativo en el tercer cuadrante.
Paso 34.1.1.4.3
El valor exacto de es .
Paso 34.1.1.4.4
Escribe como una fracción con un denominador común.
Paso 34.1.1.4.5
Combina los numeradores sobre el denominador común.
Paso 34.1.1.4.6
Multiplica el numerador por la recíproca del denominador.
Paso 34.1.1.4.7
Multiplica .
Toca para ver más pasos...
Paso 34.1.1.4.7.1
Multiplica por .
Paso 34.1.1.4.7.2
Multiplica por .
Paso 34.1.1.4.8
Reescribe como .
Paso 34.1.1.4.9
Simplifica el denominador.
Toca para ver más pasos...
Paso 34.1.1.4.9.1
Reescribe como .
Paso 34.1.1.4.9.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 34.1.2
El valor exacto de es .
Toca para ver más pasos...
Paso 34.1.2.1
Reescribe como un ángulo donde se conozcan los valores de las seis funciones trigonométricas dividido por .
Paso 34.1.2.2
Aplica la razón del ángulo mitad del seno.
Paso 34.1.2.3
Cambia por porque el seno es negativo en el cuarto cuadrante.
Paso 34.1.2.4
Simplifica .
Toca para ver más pasos...
Paso 34.1.2.4.1
Resta las rotaciones completas de hasta que el ángulo sea mayor o igual que y menor que .
Paso 34.1.2.4.2
Aplica el ángulo de referencia mediante la búsqueda del ángulo con valores trigonométricos equivalentes en el primer cuadrante. Haz que la expresión sea negativa porque el coseno es negativo en el tercer cuadrante.
Paso 34.1.2.4.3
El valor exacto de es .
Paso 34.1.2.4.4
Multiplica .
Toca para ver más pasos...
Paso 34.1.2.4.4.1
Multiplica por .
Paso 34.1.2.4.4.2
Multiplica por .
Paso 34.1.2.4.5
Escribe como una fracción con un denominador común.
Paso 34.1.2.4.6
Combina los numeradores sobre el denominador común.
Paso 34.1.2.4.7
Multiplica el numerador por la recíproca del denominador.
Paso 34.1.2.4.8
Multiplica .
Toca para ver más pasos...
Paso 34.1.2.4.8.1
Multiplica por .
Paso 34.1.2.4.8.2
Multiplica por .
Paso 34.1.2.4.9
Reescribe como .
Paso 34.1.2.4.10
Simplifica el denominador.
Toca para ver más pasos...
Paso 34.1.2.4.10.1
Reescribe como .
Paso 34.1.2.4.10.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 34.1.3
Combina y .
Paso 34.2
Combina fracciones.
Toca para ver más pasos...
Paso 34.2.1
Combina los numeradores sobre el denominador común.
Paso 34.2.2
Combina y .
Paso 35
Sustituye por para calcular el valor de tras el desplazamiento a la derecha.
Paso 36
Estas son las soluciones complejas a .