Precálculo Ejemplos

Hallar todas las soluciones complejas tan(theta)=-2sin(theta)
Paso 1
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.1
Divide cada término en por .
Paso 1.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.1.1
Cancela el factor común.
Paso 1.2.1.2
Reescribe la expresión.
Paso 1.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.3.1
Separa las fracciones.
Paso 1.3.2
Reescribe en términos de senos y cosenos.
Paso 1.3.3
Multiplica por la recíproca de la fracción para dividir por .
Paso 1.3.4
Escribe como una fracción con el denominador .
Paso 1.3.5
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.3.5.1
Cancela el factor común.
Paso 1.3.5.2
Reescribe la expresión.
Paso 1.3.6
Divide por .
Paso 2
Reescribe la ecuación como .
Paso 3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.1
Divide cada término en por .
Paso 3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.1.1
Cancela el factor común.
Paso 3.2.1.2
Divide por .
Paso 3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.3.1
Mueve el negativo al frente de la fracción.
Paso 4
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Paso 5
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.1
El valor exacto de es .
Paso 6
El coseno es negativo en el segundo y el tercer cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el tercer cuadrante.
Paso 7
Simplifica .
Toca para ver más pasos...
Paso 7.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 7.2
Combina fracciones.
Toca para ver más pasos...
Paso 7.2.1
Combina y .
Paso 7.2.2
Combina los numeradores sobre el denominador común.
Paso 7.3
Simplifica el numerador.
Toca para ver más pasos...
Paso 7.3.1
Multiplica por .
Paso 7.3.2
Resta de .
Paso 8
Obtén el período de .
Toca para ver más pasos...
Paso 8.1
El período de la función puede calcularse mediante .
Paso 8.2
Reemplaza con en la fórmula para el período.
Paso 8.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 8.4
Divide por .
Paso 9
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero