Ingresa un problema...
Precálculo Ejemplos
Paso 1
Paso 1.1
Reescribe como .
Paso 1.2
Sea . Sustituye por todos los casos de .
Paso 1.3
Factoriza con el método AC.
Paso 1.3.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 1.3.2
Escribe la forma factorizada mediante estos números enteros.
Paso 1.4
Reemplaza todos los casos de con .
Paso 2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 3
Paso 3.1
Establece igual a .
Paso 3.2
Resuelve en .
Paso 3.2.1
Suma a ambos lados de la ecuación.
Paso 3.2.2
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 3.2.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 3.2.3.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.2.3.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.2.3.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Paso 4.1
Establece igual a .
Paso 4.2
Resuelve en .
Paso 4.2.1
Resta de ambos lados de la ecuación.
Paso 4.2.2
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 4.2.3
Simplifica .
Paso 4.2.3.1
Reescribe como .
Paso 4.2.3.2
Reescribe como .
Paso 4.2.3.3
Reescribe como .
Paso 4.2.3.4
Reescribe como .
Paso 4.2.3.5
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 4.2.3.6
Mueve a la izquierda de .
Paso 4.2.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4.2.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 4.2.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 4.2.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 5
La solución final comprende todos los valores que hacen verdadera.