Ingresa un problema...
Precálculo Ejemplos
Paso 1
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 2
Paso 2.1
Suma a ambos lados de la desigualdad.
Paso 2.2
Divide cada término en por y simplifica.
Paso 2.2.1
Divide cada término en por .
Paso 2.2.2
Simplifica el lado izquierdo.
Paso 2.2.2.1
Cancela el factor común de .
Paso 2.2.2.1.1
Cancela el factor común.
Paso 2.2.2.1.2
Divide por .
Paso 3
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 4
Paso 4.1
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cuadrado ambos lados de la ecuación.
Paso 4.2
Simplifica cada lado de la ecuación.
Paso 4.2.1
Usa para reescribir como .
Paso 4.2.2
Simplifica el lado izquierdo.
Paso 4.2.2.1
Simplifica .
Paso 4.2.2.1.1
Multiplica los exponentes en .
Paso 4.2.2.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.2.2.1.1.2
Cancela el factor común de .
Paso 4.2.2.1.1.2.1
Cancela el factor común.
Paso 4.2.2.1.1.2.2
Reescribe la expresión.
Paso 4.2.2.1.2
Simplifica.
Paso 4.2.3
Simplifica el lado derecho.
Paso 4.2.3.1
Elevar a cualquier potencia positiva da como resultado .
Paso 4.3
Resuelve
Paso 4.3.1
Suma a ambos lados de la ecuación.
Paso 4.3.2
Divide cada término en por y simplifica.
Paso 4.3.2.1
Divide cada término en por .
Paso 4.3.2.2
Simplifica el lado izquierdo.
Paso 4.3.2.2.1
Cancela el factor común de .
Paso 4.3.2.2.1.1
Cancela el factor común.
Paso 4.3.2.2.1.2
Divide por .
Paso 5
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 6
Paso 6.1
Suma a ambos lados de la ecuación.
Paso 6.2
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 6.3
Simplifica .
Paso 6.3.1
Reescribe como .
Paso 6.3.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 6.4
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 6.4.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 6.4.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 6.4.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 7
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 8