Ingresa un problema...
Precálculo Ejemplos
Paso 1
Resta de ambos lados de la desigualdad.
Paso 2
Paso 2.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 2.2
Combina y .
Paso 2.3
Combina los numeradores sobre el denominador común.
Paso 2.4
Simplifica el numerador.
Paso 2.4.1
Aplica la propiedad distributiva.
Paso 2.4.2
Multiplica por .
Paso 2.4.3
Resta de .
Paso 2.4.4
Resta de .
Paso 2.5
Factoriza de .
Paso 2.6
Reescribe como .
Paso 2.7
Factoriza de .
Paso 2.8
Reescribe como .
Paso 2.9
Mueve el negativo al frente de la fracción.
Paso 3
Obtén todos los valores donde la expresión cambia de negativa a positiva mediante la definición de cada factor igual a y la resolución.
Paso 4
Resta de ambos lados de la ecuación.
Paso 5
Resta de ambos lados de la ecuación.
Paso 6
Resuelve cada factor para obtener los valores donde la expresión de valor absoluto va de positiva a negativa.
Paso 7
Consolida las soluciones.
Paso 8
Paso 8.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 8.2
Resta de ambos lados de la ecuación.
Paso 8.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 9
Usa cada raíz para crear intervalos de prueba.
Paso 10
Paso 10.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 10.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 10.1.2
Reemplaza con en la desigualdad original.
Paso 10.1.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 10.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 10.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 10.2.2
Reemplaza con en la desigualdad original.
Paso 10.2.3
del lado izquierdo no es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 10.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 10.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 10.3.2
Reemplaza con en la desigualdad original.
Paso 10.3.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 10.4
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Verdadero
Falso
Verdadero
Verdadero
Falso
Verdadero
Paso 11
La solución consiste en todos los intervalos verdaderos.
o
Paso 12
Convierte la desigualdad a notación de intervalo.
Paso 13