Ingresa un problema...
Precálculo Ejemplos
Paso 1
Si una función polinomial tiene coeficientes enteros, entonces todo cero racional tendrá la forma , donde es un factor de la constante y es un factor del coeficiente principal.
Paso 2
Obtén todas las combinaciones de . Estas son las posibles raíces de la función polinomial.
Paso 3
Sustituye las posibles raíces una por una en el polinomio para obtener las raíces reales. Simplifica para comprobar si el valor es , lo que significa que es una raíz.
Paso 4
Paso 4.1
Simplifica cada término.
Paso 4.1.1
Eleva a la potencia de .
Paso 4.1.2
Multiplica por sumando los exponentes.
Paso 4.1.2.1
Multiplica por .
Paso 4.1.2.1.1
Eleva a la potencia de .
Paso 4.1.2.1.2
Usa la regla de la potencia para combinar exponentes.
Paso 4.1.2.2
Suma y .
Paso 4.1.3
Eleva a la potencia de .
Paso 4.1.4
Eleva a la potencia de .
Paso 4.1.5
Multiplica por .
Paso 4.1.6
Multiplica por .
Paso 4.2
Simplifica mediante suma y resta.
Paso 4.2.1
Suma y .
Paso 4.2.2
Resta de .
Paso 4.2.3
Resta de .
Paso 4.2.4
Suma y .
Paso 5
Como es una raíz conocida, divide el polinomio por para obtener el polinomio del cociente. Este polinomio luego se puede usar para obtener las raíces restantes.
Paso 6
Paso 6.1
Coloca los números que representan el divisor y el dividendo en una configuración tipo división.
Paso 6.2
El primer número en el dividendo se pone en la primera posición del área del resultado (debajo de la recta horizontal).
Paso 6.3
Multiplica la entrada más reciente en el resultado por el divisor y coloca el resultado de debajo del siguiente término en el dividendo .
Paso 6.4
Suma el producto de la multiplicación y el número del dividendo y coloca el resultado en la siguiente posición en la línea del resultado.
Paso 6.5
Multiplica la entrada más reciente en el resultado por el divisor y coloca el resultado de debajo del siguiente término en el dividendo .
Paso 6.6
Suma el producto de la multiplicación y el número del dividendo y coloca el resultado en la siguiente posición en la línea del resultado.
Paso 6.7
Multiplica la entrada más reciente en el resultado por el divisor y coloca el resultado de debajo del siguiente término en el dividendo .
Paso 6.8
Suma el producto de la multiplicación y el número del dividendo y coloca el resultado en la siguiente posición en la línea del resultado.
Paso 6.9
Multiplica la entrada más reciente en el resultado por el divisor y coloca el resultado de debajo del siguiente término en el dividendo .
Paso 6.10
Suma el producto de la multiplicación y el número del dividendo y coloca el resultado en la siguiente posición en la línea del resultado.
Paso 6.11
Todos los números excepto el último se convierten en coeficientes del polinomio del cociente. El último valor de la línea del resultado es el resto.
Paso 6.12
Simplifica el polinomio del cociente.
Paso 7
Paso 7.1
Factoriza mediante la prueba de raíces racionales.
Paso 7.1.1
Si una función polinomial tiene coeficientes enteros, entonces todo cero racional tendrá la forma , donde es un factor de la constante y es un factor del coeficiente principal.
Paso 7.1.2
Obtén todas las combinaciones de . Estas son las posibles raíces de la función polinomial.
Paso 7.1.3
Sustituye y simplifica la expresión. En este caso, la expresión es igual a , por lo que es una raíz del polinomio.
Paso 7.1.3.1
Sustituye en el polinomio.
Paso 7.1.3.2
Eleva a la potencia de .
Paso 7.1.3.3
Eleva a la potencia de .
Paso 7.1.3.4
Multiplica por .
Paso 7.1.3.5
Suma y .
Paso 7.1.3.6
Multiplica por .
Paso 7.1.3.7
Resta de .
Paso 7.1.3.8
Resta de .
Paso 7.1.4
Como es una raíz conocida, divide el polinomio por para obtener el polinomio del cociente. Este polinomio luego se puede usar para obtener las raíces restantes.
Paso 7.1.5
Divide por .
Paso 7.1.5.1
Establece los polinomios que se dividirán. Si no hay un término para cada exponente, inserta uno con un valor de .
+ | + | + | - |
Paso 7.1.5.2
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
+ | + | + | - |
Paso 7.1.5.3
Multiplica el nuevo término del cociente por el divisor.
+ | + | + | - | ||||||||
+ | + |
Paso 7.1.5.4
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
+ | + | + | - | ||||||||
- | - |
Paso 7.1.5.5
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
+ | + | + | - | ||||||||
- | - | ||||||||||
+ |
Paso 7.1.5.6
Retira los próximos términos del dividendo original hacia el dividendo actual.
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + |
Paso 7.1.5.7
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
+ | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + |
Paso 7.1.5.8
Multiplica el nuevo término del cociente por el divisor.
+ | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + |
Paso 7.1.5.9
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
+ | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - |
Paso 7.1.5.10
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
+ | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- |
Paso 7.1.5.11
Retira los próximos términos del dividendo original hacia el dividendo actual.
+ | |||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - |
Paso 7.1.5.12
Divide el término de mayor orden en el dividendo por el término de mayor orden en el divisor .
+ | - | ||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - |
Paso 7.1.5.13
Multiplica el nuevo término del cociente por el divisor.
+ | - | ||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - | ||||||||||
- | - |
Paso 7.1.5.14
La expresión debe restarse del dividendo, así es que cambia todos los signos en .
+ | - | ||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + |
Paso 7.1.5.15
Después de cambiar los signos, agrega el último dividendo del polinomio multiplicado para buscar el nuevo dividendo.
+ | - | ||||||||||
+ | + | + | - | ||||||||
- | - | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
Paso 7.1.5.16
Como el resto es , la respuesta final es el cociente.
Paso 7.1.6
Escribe como un conjunto de factores.
Paso 7.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 7.3
Establece igual a y resuelve .
Paso 7.3.1
Establece igual a .
Paso 7.3.2
Resta de ambos lados de la ecuación.
Paso 7.4
Establece igual a y resuelve .
Paso 7.4.1
Establece igual a .
Paso 7.4.2
Resuelve en .
Paso 7.4.2.1
Usa la fórmula cuadrática para obtener las soluciones.
Paso 7.4.2.2
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 7.4.2.3
Simplifica.
Paso 7.4.2.3.1
Simplifica el numerador.
Paso 7.4.2.3.1.1
Eleva a la potencia de .
Paso 7.4.2.3.1.2
Multiplica .
Paso 7.4.2.3.1.2.1
Multiplica por .
Paso 7.4.2.3.1.2.2
Multiplica por .
Paso 7.4.2.3.1.3
Suma y .
Paso 7.4.2.3.1.4
Reescribe como .
Paso 7.4.2.3.1.4.1
Factoriza de .
Paso 7.4.2.3.1.4.2
Reescribe como .
Paso 7.4.2.3.1.5
Retira los términos de abajo del radical.
Paso 7.4.2.3.2
Multiplica por .
Paso 7.4.2.3.3
Simplifica .
Paso 7.4.2.4
Simplifica la expresión para obtener el valor de la parte de .
Paso 7.4.2.4.1
Simplifica el numerador.
Paso 7.4.2.4.1.1
Eleva a la potencia de .
Paso 7.4.2.4.1.2
Multiplica .
Paso 7.4.2.4.1.2.1
Multiplica por .
Paso 7.4.2.4.1.2.2
Multiplica por .
Paso 7.4.2.4.1.3
Suma y .
Paso 7.4.2.4.1.4
Reescribe como .
Paso 7.4.2.4.1.4.1
Factoriza de .
Paso 7.4.2.4.1.4.2
Reescribe como .
Paso 7.4.2.4.1.5
Retira los términos de abajo del radical.
Paso 7.4.2.4.2
Multiplica por .
Paso 7.4.2.4.3
Simplifica .
Paso 7.4.2.4.4
Cambia a .
Paso 7.4.2.5
Simplifica la expresión para obtener el valor de la parte de .
Paso 7.4.2.5.1
Simplifica el numerador.
Paso 7.4.2.5.1.1
Eleva a la potencia de .
Paso 7.4.2.5.1.2
Multiplica .
Paso 7.4.2.5.1.2.1
Multiplica por .
Paso 7.4.2.5.1.2.2
Multiplica por .
Paso 7.4.2.5.1.3
Suma y .
Paso 7.4.2.5.1.4
Reescribe como .
Paso 7.4.2.5.1.4.1
Factoriza de .
Paso 7.4.2.5.1.4.2
Reescribe como .
Paso 7.4.2.5.1.5
Retira los términos de abajo del radical.
Paso 7.4.2.5.2
Multiplica por .
Paso 7.4.2.5.3
Simplifica .
Paso 7.4.2.5.4
Cambia a .
Paso 7.4.2.6
La respuesta final es la combinación de ambas soluciones.
Paso 7.5
La solución final comprende todos los valores que hacen verdadera.
Paso 8
El polinomio puede escribirse como un conjunto de factores lineales.
Paso 9
Estas son las raíces (ceros) del polinomio .
Paso 10
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal:
Paso 11