Ingresa un problema...
Precálculo Ejemplos
Paso 1
Reemplaza con .
Paso 2
Paso 2.1
Suma y .
Paso 2.2
Factoriza por agrupación.
Paso 2.2.1
Reordena los términos.
Paso 2.2.2
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Paso 2.2.2.1
Factoriza de .
Paso 2.2.2.2
Reescribe como más
Paso 2.2.2.3
Aplica la propiedad distributiva.
Paso 2.2.2.4
Multiplica por .
Paso 2.2.3
Factoriza el máximo común divisor de cada grupo.
Paso 2.2.3.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 2.2.3.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 2.2.4
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.4
Establece igual a y resuelve .
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Resuelve en .
Paso 2.4.2.1
Resta de ambos lados de la ecuación.
Paso 2.4.2.2
Divide cada término en por y simplifica.
Paso 2.4.2.2.1
Divide cada término en por .
Paso 2.4.2.2.2
Simplifica el lado izquierdo.
Paso 2.4.2.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.4.2.2.2.2
Divide por .
Paso 2.4.2.2.3
Simplifica el lado derecho.
Paso 2.4.2.2.3.1
Divide por .
Paso 2.4.2.3
Resta la inversa del coseno de ambos lados de la ecuación para extraer del interior del coseno.
Paso 2.4.2.4
Simplifica el lado derecho.
Paso 2.4.2.4.1
El valor exacto de es .
Paso 2.4.2.5
La función coseno es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Paso 2.4.2.6
Resta de .
Paso 2.4.2.7
Obtén el período de .
Paso 2.4.2.7.1
El período de la función puede calcularse mediante .
Paso 2.4.2.7.2
Reemplaza con en la fórmula para el período.
Paso 2.4.2.7.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 2.4.2.7.4
Divide por .
Paso 2.4.2.8
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Paso 2.5
Establece igual a y resuelve .
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Resuelve en .
Paso 2.5.2.1
Resta de ambos lados de la ecuación.
Paso 2.5.2.2
El rango del coseno es . Como no está dentro de este rango, no hay solución.
No hay solución
No hay solución
No hay solución
Paso 2.6
La solución final comprende todos los valores que hacen verdadera.
, para cualquier número entero
, para cualquier número entero
Paso 3
Consolida las respuestas.
, para cualquier número entero