Precálculo Ejemplos

حل من أجل x raíz cuadrada de 3tan(x-pi/9)-1=0
Paso 1
Suma a ambos lados de la ecuación.
Paso 2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.1
Divide cada término en por .
Paso 2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.1
Cancela el factor común.
Paso 2.2.1.2
Divide por .
Paso 2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Multiplica por .
Paso 2.3.2
Combina y simplifica el denominador.
Toca para ver más pasos...
Paso 2.3.2.1
Multiplica por .
Paso 2.3.2.2
Eleva a la potencia de .
Paso 2.3.2.3
Eleva a la potencia de .
Paso 2.3.2.4
Usa la regla de la potencia para combinar exponentes.
Paso 2.3.2.5
Suma y .
Paso 2.3.2.6
Reescribe como .
Toca para ver más pasos...
Paso 2.3.2.6.1
Usa para reescribir como .
Paso 2.3.2.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.3.2.6.3
Combina y .
Paso 2.3.2.6.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.2.6.4.1
Cancela el factor común.
Paso 2.3.2.6.4.2
Reescribe la expresión.
Paso 2.3.2.6.5
Evalúa el exponente.
Paso 3
Resta la inversa de la tangente de ambos lados de la ecuación para extraer del interior de la tangente.
Paso 4
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.1
El valor exacto de es .
Paso 5
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 5.1
Suma a ambos lados de la ecuación.
Paso 5.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 5.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 5.4
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Toca para ver más pasos...
Paso 5.4.1
Multiplica por .
Paso 5.4.2
Multiplica por .
Paso 5.4.3
Multiplica por .
Paso 5.4.4
Multiplica por .
Paso 5.5
Combina los numeradores sobre el denominador común.
Paso 5.6
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.6.1
Mueve a la izquierda de .
Paso 5.6.2
Mueve a la izquierda de .
Paso 5.6.3
Suma y .
Paso 6
La función tangente es positiva en el primer y el tercer cuadrante. Para obtener la segunda solución, suma el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Paso 7
Resuelve
Toca para ver más pasos...
Paso 7.1
Simplifica .
Toca para ver más pasos...
Paso 7.1.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 7.1.2
Combina fracciones.
Toca para ver más pasos...
Paso 7.1.2.1
Combina y .
Paso 7.1.2.2
Combina los numeradores sobre el denominador común.
Paso 7.1.3
Simplifica el numerador.
Toca para ver más pasos...
Paso 7.1.3.1
Mueve a la izquierda de .
Paso 7.1.3.2
Suma y .
Paso 7.2
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 7.2.1
Suma a ambos lados de la ecuación.
Paso 7.2.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 7.2.3
Para escribir como una fracción con un denominador común, multiplica por .
Paso 7.2.4
Escribe cada expresión con un denominador común de , mediante la multiplicación de cada uno por un factor adecuado de .
Toca para ver más pasos...
Paso 7.2.4.1
Multiplica por .
Paso 7.2.4.2
Multiplica por .
Paso 7.2.4.3
Multiplica por .
Paso 7.2.4.4
Multiplica por .
Paso 7.2.5
Combina los numeradores sobre el denominador común.
Paso 7.2.6
Simplifica el numerador.
Toca para ver más pasos...
Paso 7.2.6.1
Multiplica por .
Paso 7.2.6.2
Mueve a la izquierda de .
Paso 7.2.6.3
Suma y .
Paso 8
Obtén el período de .
Toca para ver más pasos...
Paso 8.1
El período de la función puede calcularse mediante .
Paso 8.2
Reemplaza con en la fórmula para el período.
Paso 8.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 8.4
Divide por .
Paso 9
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
Paso 10
Consolida las respuestas.
, para cualquier número entero