Precálculo Ejemplos

حل من أجل x 8e^(2x)+8e^x=6
Paso 1
Reescribe como exponenciación.
Paso 2
Sustituye por .
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Resta de ambos lados de la ecuación.
Paso 3.2
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 3.2.1
Factoriza de .
Toca para ver más pasos...
Paso 3.2.1.1
Factoriza de .
Paso 3.2.1.2
Factoriza de .
Paso 3.2.1.3
Factoriza de .
Paso 3.2.1.4
Factoriza de .
Paso 3.2.1.5
Factoriza de .
Paso 3.2.2
Factoriza.
Toca para ver más pasos...
Paso 3.2.2.1
Factoriza por agrupación.
Toca para ver más pasos...
Paso 3.2.2.1.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 3.2.2.1.1.1
Factoriza de .
Paso 3.2.2.1.1.2
Reescribe como más
Paso 3.2.2.1.1.3
Aplica la propiedad distributiva.
Paso 3.2.2.1.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 3.2.2.1.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 3.2.2.1.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 3.2.2.1.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 3.2.2.2
Elimina los paréntesis innecesarios.
Paso 3.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 3.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 3.4.1
Establece igual a .
Paso 3.4.2
Resuelve en .
Toca para ver más pasos...
Paso 3.4.2.1
Suma a ambos lados de la ecuación.
Paso 3.4.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.4.2.2.1
Divide cada término en por .
Paso 3.4.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.4.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.4.2.2.2.1.1
Cancela el factor común.
Paso 3.4.2.2.2.1.2
Divide por .
Paso 3.5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 3.5.1
Establece igual a .
Paso 3.5.2
Resuelve en .
Toca para ver más pasos...
Paso 3.5.2.1
Resta de ambos lados de la ecuación.
Paso 3.5.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.5.2.2.1
Divide cada término en por .
Paso 3.5.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.5.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.5.2.2.2.1.1
Cancela el factor común.
Paso 3.5.2.2.2.1.2
Divide por .
Paso 3.5.2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.5.2.2.3.1
Mueve el negativo al frente de la fracción.
Paso 3.6
La solución final comprende todos los valores que hacen verdadera.
Paso 4
Sustituye por en .
Paso 5
Resuelve .
Toca para ver más pasos...
Paso 5.1
Reescribe la ecuación como .
Paso 5.2
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 5.3
Expande el lado izquierdo.
Toca para ver más pasos...
Paso 5.3.1
Expande ; para ello, mueve fuera del logaritmo.
Paso 5.3.2
El logaritmo natural de es .
Paso 5.3.3
Multiplica por .
Paso 6
Sustituye por en .
Paso 7
Resuelve .
Toca para ver más pasos...
Paso 7.1
Reescribe la ecuación como .
Paso 7.2
Resta el logaritmo natural de ambos lados de la ecuación para eliminar la variable del exponente.
Paso 7.3
La ecuación no puede resolverse porque es indefinida.
Indefinida
Paso 7.4
No hay soluciones para
No hay solución
No hay solución
Paso 8
Enumera las soluciones que hacen que la ecuación sea verdadera.
Paso 9
El resultado puede mostrarse de distintas formas.
Forma exacta:
Forma decimal: