Precálculo Ejemplos

Convertir a notación de intervalo -1/2x^2-7/2x-5<0
Paso 1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.1
Combina y .
Paso 1.2
Combina y .
Paso 1.3
Mueve a la izquierda de .
Paso 2
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 2.1
Multiplica cada término en por .
Paso 2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.2.1.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.1.1
Mueve el signo menos inicial en al numerador.
Paso 2.2.1.1.2
Cancela el factor común.
Paso 2.2.1.1.3
Reescribe la expresión.
Paso 2.2.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.2.1
Mueve el signo menos inicial en al numerador.
Paso 2.2.1.2.2
Cancela el factor común.
Paso 2.2.1.2.3
Reescribe la expresión.
Paso 2.2.1.3
Multiplica por .
Paso 2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Multiplica por .
Paso 3
Convierte la desigualdad en una ecuación.
Paso 4
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 4.1
Factoriza de .
Toca para ver más pasos...
Paso 4.1.1
Factoriza de .
Paso 4.1.2
Factoriza de .
Paso 4.1.3
Reescribe como .
Paso 4.1.4
Factoriza de .
Paso 4.1.5
Factoriza de .
Paso 4.2
Factoriza.
Toca para ver más pasos...
Paso 4.2.1
Factoriza con el método AC.
Toca para ver más pasos...
Paso 4.2.1.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 4.2.1.2
Escribe la forma factorizada mediante estos números enteros.
Paso 4.2.2
Elimina los paréntesis innecesarios.
Paso 5
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 6
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 6.1
Establece igual a .
Paso 6.2
Resta de ambos lados de la ecuación.
Paso 7
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 7.1
Establece igual a .
Paso 7.2
Resta de ambos lados de la ecuación.
Paso 8
La solución final comprende todos los valores que hacen verdadera.
Paso 9
Usa cada raíz para crear intervalos de prueba.
Paso 10
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Toca para ver más pasos...
Paso 10.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 10.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 10.1.2
Reemplaza con en la desigualdad original.
Paso 10.1.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
True
True
Paso 10.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 10.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 10.2.2
Reemplaza con en la desigualdad original.
Paso 10.2.3
del lado izquierdo no es menor que del lado derecho, lo que significa que el enunciado dado es falso.
False
False
Paso 10.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 10.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 10.3.2
Reemplaza con en la desigualdad original.
Paso 10.3.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
True
True
Paso 10.4
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Verdadero
Falso
Verdadero
Verdadero
Falso
Verdadero
Paso 11
La solución consiste en todos los intervalos verdaderos.
o
Paso 12
Convierte la desigualdad a notación de intervalo.
Paso 13