Precálculo Ejemplos

Resolver por sustitución x-2y=0 , 3x-y^2=0
,
Paso 1
Suma a ambos lados de la ecuación.
Paso 2
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 2.1
Reemplaza todos los casos de en por .
Paso 2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Multiplica por .
Paso 3
Resuelve en .
Toca para ver más pasos...
Paso 3.1
Factoriza el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 3.1.1
Sea . Sustituye por todos los casos de .
Paso 3.1.2
Factoriza de .
Toca para ver más pasos...
Paso 3.1.2.1
Factoriza de .
Paso 3.1.2.2
Factoriza de .
Paso 3.1.2.3
Factoriza de .
Paso 3.1.2.4
Multiplica por .
Paso 3.1.3
Reemplaza todos los casos de con .
Paso 3.2
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 3.3
Establece igual a .
Paso 3.4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 3.4.1
Establece igual a .
Paso 3.4.2
Resuelve en .
Toca para ver más pasos...
Paso 3.4.2.1
Resta de ambos lados de la ecuación.
Paso 3.4.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.4.2.2.1
Divide cada término en por .
Paso 3.4.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.4.2.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 3.4.2.2.2.2
Divide por .
Paso 3.4.2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.4.2.2.3.1
Divide por .
Paso 3.5
La solución final comprende todos los valores que hacen verdadera.
Paso 4
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 4.1
Reemplaza todos los casos de en por .
Paso 4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.2.1
Multiplica por .
Paso 5
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 5.1
Reemplaza todos los casos de en por .
Paso 5.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.2.1
Multiplica por .
Paso 6
La solución del sistema es el conjunto completo de pares ordenados que son soluciones válidas.
Paso 7
El resultado puede mostrarse de distintas formas.
Forma de punto:
Forma de la ecuación:
Paso 8