Precálculo Ejemplos

Resolver por sustitución x^2+y^2=2 , xy=1
,
Paso 1
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 1.1
Divide cada término en por .
Paso 1.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 1.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 1.2.1.1
Cancela el factor común.
Paso 1.2.1.2
Divide por .
Paso 2
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 2.1
Reemplaza todos los casos de en por .
Paso 2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.2.1.1
Aplica la regla del producto a .
Paso 2.2.1.2
Uno elevado a cualquier potencia es uno.
Paso 3
Resuelve en .
Toca para ver más pasos...
Paso 3.1
Obtén el mcd de los términos en la ecuación.
Toca para ver más pasos...
Paso 3.1.1
La obtención del mcd de una lista de valores es lo mismo que obtener el MCM de los denominadores de esos valores.
Paso 3.1.2
El mínimo común múltiplo (MCM) de una y cualquier expresión es la expresión.
Paso 3.2
Multiplica cada término en por para eliminar las fracciones.
Toca para ver más pasos...
Paso 3.2.1
Multiplica cada término en por .
Paso 3.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 3.2.2.1.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.2.1.1.1
Cancela el factor común.
Paso 3.2.2.1.1.2
Reescribe la expresión.
Paso 3.2.2.1.2
Multiplica por sumando los exponentes.
Toca para ver más pasos...
Paso 3.2.2.1.2.1
Usa la regla de la potencia para combinar exponentes.
Paso 3.2.2.1.2.2
Suma y .
Paso 3.3
Resuelve la ecuación.
Toca para ver más pasos...
Paso 3.3.1
Resta de ambos lados de la ecuación.
Paso 3.3.2
Sustituye en la ecuación. Esto hará que la fórmula cuadrática sea fácil de usar.
Paso 3.3.3
Factoriza con la regla del cuadrado perfecto.
Toca para ver más pasos...
Paso 3.3.3.1
Reescribe como .
Paso 3.3.3.2
Comprueba que el término medio sea dos veces el producto de los números que se elevan al cuadrado en el primer término y el tercer término.
Paso 3.3.3.3
Reescribe el polinomio.
Paso 3.3.3.4
Factoriza con la regla del trinomio cuadrado perfecto , donde y .
Paso 3.3.4
Establece igual a .
Paso 3.3.5
Suma a ambos lados de la ecuación.
Paso 3.3.6
Sustituye el valor real de de nuevo en la ecuación resuelta.
Paso 3.3.7
Resuelve la ecuación en .
Toca para ver más pasos...
Paso 3.3.7.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 3.3.7.2
Cualquier raíz de es .
Paso 3.3.7.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 3.3.7.3.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 3.3.7.3.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 3.3.7.3.3
La solución completa es el resultado de las partes positiva y negativa de la solución.
Paso 4
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 4.1
Reemplaza todos los casos de en por .
Paso 4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.2.1
Divide por .
Paso 5
Reemplaza todos los casos de por en cada ecuación.
Toca para ver más pasos...
Paso 5.1
Reemplaza todos los casos de en por .
Paso 5.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.2.1
Divide por .
Paso 6
La solución del sistema es el conjunto completo de pares ordenados que son soluciones válidas.
Paso 7
El resultado puede mostrarse de distintas formas.
Forma de punto:
Forma de la ecuación:
Paso 8