Ingresa un problema...
Precálculo Ejemplos
Paso 1
Resta de ambos lados de la ecuación.
Paso 2
Resta la inversa de seno de ambos lados de la ecuación para extraer del interior de seno.
Paso 3
Paso 3.1
El valor exacto de es .
Paso 4
Paso 4.1
Divide cada término en por .
Paso 4.2
Simplifica el lado izquierdo.
Paso 4.2.1
Cancela el factor común de .
Paso 4.2.1.1
Cancela el factor común.
Paso 4.2.1.2
Divide por .
Paso 4.3
Simplifica el lado derecho.
Paso 4.3.1
Multiplica el numerador por la recíproca del denominador.
Paso 4.3.2
Multiplica .
Paso 4.3.2.1
Multiplica por .
Paso 4.3.2.2
Multiplica por .
Paso 5
La función seno es negativa en el tercer y el cuarto cuadrante. Para obtener la segunda solución, resta la solución de para obtener un ángulo de referencia. A continuación, suma este ángulo de referencia a para obtener la solución en el tercer cuadrante.
Paso 6
Paso 6.1
Resta de .
Paso 6.2
El ángulo resultante de es positivo, menor que y coterminal con .
Paso 6.3
Divide cada término en por y simplifica.
Paso 6.3.1
Divide cada término en por .
Paso 6.3.2
Simplifica el lado izquierdo.
Paso 6.3.2.1
Cancela el factor común de .
Paso 6.3.2.1.1
Cancela el factor común.
Paso 6.3.2.1.2
Divide por .
Paso 6.3.3
Simplifica el lado derecho.
Paso 6.3.3.1
Multiplica el numerador por la recíproca del denominador.
Paso 6.3.3.2
Multiplica .
Paso 6.3.3.2.1
Multiplica por .
Paso 6.3.3.2.2
Multiplica por .
Paso 7
Paso 7.1
El período de la función puede calcularse mediante .
Paso 7.2
Reemplaza con en la fórmula para el período.
Paso 7.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 7.4
Cancela el factor común de .
Paso 7.4.1
Cancela el factor común.
Paso 7.4.2
Divide por .
Paso 8
Paso 8.1
Suma y para obtener el ángulo positivo.
Paso 8.2
Para escribir como una fracción con un denominador común, multiplica por .
Paso 8.3
Combina fracciones.
Paso 8.3.1
Combina y .
Paso 8.3.2
Combina los numeradores sobre el denominador común.
Paso 8.4
Simplifica el numerador.
Paso 8.4.1
Mueve a la izquierda de .
Paso 8.4.2
Resta de .
Paso 8.5
Enumera los nuevos ángulos.
Paso 9
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
Paso 10
Consolida las respuestas.
, para cualquier número entero