Precálculo Ejemplos

حل من أجل x raíz cuadrada de 2 raíz cuadrada de x+2 = raíz cuadrada de x+2
Paso 1
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cuadrado ambos lados de la ecuación.
Paso 2
Simplifica cada lado de la ecuación.
Toca para ver más pasos...
Paso 2.1
Usa para reescribir como .
Paso 2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.2.1
Simplifica .
Toca para ver más pasos...
Paso 2.2.1.1
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 2.2.1.1.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.2.1.1.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.2.1.1.2.1
Cancela el factor común.
Paso 2.2.1.1.2.2
Reescribe la expresión.
Paso 2.2.1.2
Simplifica.
Paso 2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.1
Reescribe como .
Toca para ver más pasos...
Paso 2.3.1.1
Usa para reescribir como .
Paso 2.3.1.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 2.3.1.3
Combina y .
Paso 2.3.1.4
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.1.4.1
Cancela el factor común.
Paso 2.3.1.4.2
Reescribe la expresión.
Paso 2.3.1.5
Simplifica.
Paso 3
Para eliminar el radical en el lazo izquierdo de la ecuación, eleva al cuadrado ambos lados de la ecuación.
Paso 4
Simplifica cada lado de la ecuación.
Toca para ver más pasos...
Paso 4.1
Usa para reescribir como .
Paso 4.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 4.2.1
Simplifica .
Toca para ver más pasos...
Paso 4.2.1.1
Aplica la regla del producto a .
Paso 4.2.1.2
Eleva a la potencia de .
Paso 4.2.1.3
Multiplica los exponentes en .
Toca para ver más pasos...
Paso 4.2.1.3.1
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 4.2.1.3.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 4.2.1.3.2.1
Cancela el factor común.
Paso 4.2.1.3.2.2
Reescribe la expresión.
Paso 4.2.1.4
Simplifica.
Paso 4.2.1.5
Aplica la propiedad distributiva.
Paso 4.2.1.6
Multiplica por .
Paso 4.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.3.1
Simplifica .
Toca para ver más pasos...
Paso 4.3.1.1
Reescribe como .
Paso 4.3.1.2
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 4.3.1.2.1
Aplica la propiedad distributiva.
Paso 4.3.1.2.2
Aplica la propiedad distributiva.
Paso 4.3.1.2.3
Aplica la propiedad distributiva.
Paso 4.3.1.3
Simplifica y combina los términos similares.
Toca para ver más pasos...
Paso 4.3.1.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 4.3.1.3.1.1
Multiplica por .
Paso 4.3.1.3.1.2
Mueve a la izquierda de .
Paso 4.3.1.3.1.3
Multiplica por .
Paso 4.3.1.3.2
Suma y .
Paso 5
Resuelve
Toca para ver más pasos...
Paso 5.1
Como está en el lado derecho de la ecuación, cambia los lados para que quede en el lado izquierdo de la ecuación.
Paso 5.2
Mueve todos los términos que contengan al lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 5.2.1
Resta de ambos lados de la ecuación.
Paso 5.2.2
Combina los términos opuestos en .
Toca para ver más pasos...
Paso 5.2.2.1
Resta de .
Paso 5.2.2.2
Suma y .
Paso 5.3
Mueve todos los términos que no contengan al lado derecho de la ecuación.
Toca para ver más pasos...
Paso 5.3.1
Resta de ambos lados de la ecuación.
Paso 5.3.2
Resta de .
Paso 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Paso 5.5
Simplifica .
Toca para ver más pasos...
Paso 5.5.1
Reescribe como .
Paso 5.5.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 5.6
La solución completa es el resultado de las partes positiva y negativa de la solución.
Toca para ver más pasos...
Paso 5.6.1
Primero, usa el valor positivo de para obtener la primera solución.
Paso 5.6.2
Luego, usa el valor negativo de para obtener la segunda solución.
Paso 5.6.3
La solución completa es el resultado de las partes positiva y negativa de la solución.