Ingresa un problema...
Precálculo Ejemplos
Paso 1
Convierte la desigualdad a una igualdad.
Paso 2
Paso 2.1
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 2.2
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 2.3
Resuelve
Paso 2.3.1
Reescribe la ecuación como .
Paso 2.3.2
Resta de ambos lados de la ecuación.
Paso 2.3.3
Divide cada término en por y simplifica.
Paso 2.3.3.1
Divide cada término en por .
Paso 2.3.3.2
Simplifica el lado izquierdo.
Paso 2.3.3.2.1
Cancela el factor común de .
Paso 2.3.3.2.1.1
Cancela el factor común.
Paso 2.3.3.2.1.2
Divide por .
Paso 2.3.3.3
Simplifica el lado derecho.
Paso 2.3.3.3.1
Simplifica cada término.
Paso 2.3.3.3.1.1
Mueve el negativo al frente de la fracción.
Paso 2.3.3.3.1.2
La división de dos valores negativos da como resultado un valor positivo.
Paso 3
Paso 3.1
Establece el argumento en mayor que para obtener el lugar donde está definida la expresión.
Paso 3.2
Resuelve
Paso 3.2.1
Resta de ambos lados de la desigualdad.
Paso 3.2.2
Divide cada término en por y simplifica.
Paso 3.2.2.1
Divide cada término de por . Cuando multipliques o dividas ambos lados de una desigualdad por un valor negativo, cambia la dirección del signo de desigualdad.
Paso 3.2.2.2
Simplifica el lado izquierdo.
Paso 3.2.2.2.1
Cancela el factor común de .
Paso 3.2.2.2.1.1
Cancela el factor común.
Paso 3.2.2.2.1.2
Divide por .
Paso 3.2.2.3
Simplifica el lado derecho.
Paso 3.2.2.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 3.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 4
La solución consiste en todos los intervalos verdaderos.
Paso 5
El resultado puede mostrarse de distintas formas.
Forma de desigualdad:
Notación de intervalo:
Paso 6