Precálculo Ejemplos

حل من أجل x logaritmo natural de 2-5x>2
Paso 1
Convierte la desigualdad a una igualdad.
Paso 2
Resuelve la ecuación.
Toca para ver más pasos...
Paso 2.1
Para resolver , reescribe la ecuación mediante las propiedades de los logaritmos.
Paso 2.2
Reescribe en formato exponencial mediante la definición de un logaritmo. Si y son números reales positivos y , entonces es equivalente a .
Paso 2.3
Resuelve
Toca para ver más pasos...
Paso 2.3.1
Reescribe la ecuación como .
Paso 2.3.2
Resta de ambos lados de la ecuación.
Paso 2.3.3
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.3.3.1
Divide cada término en por .
Paso 2.3.3.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.3.3.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.3.2.1.1
Cancela el factor común.
Paso 2.3.3.2.1.2
Divide por .
Paso 2.3.3.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.3.3.3.1
Simplifica cada término.
Toca para ver más pasos...
Paso 2.3.3.3.1.1
Mueve el negativo al frente de la fracción.
Paso 2.3.3.3.1.2
La división de dos valores negativos da como resultado un valor positivo.
Paso 3
Obtén el dominio de .
Toca para ver más pasos...
Paso 3.1
Establece el argumento en mayor que para obtener el lugar donde está definida la expresión.
Paso 3.2
Resuelve
Toca para ver más pasos...
Paso 3.2.1
Resta de ambos lados de la desigualdad.
Paso 3.2.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 3.2.2.1
Divide cada término de por . Cuando multipliques o dividas ambos lados de una desigualdad por un valor negativo, cambia la dirección del signo de desigualdad.
Paso 3.2.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 3.2.2.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 3.2.2.2.1.1
Cancela el factor común.
Paso 3.2.2.2.1.2
Divide por .
Paso 3.2.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 3.2.2.3.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 3.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 4
La solución consiste en todos los intervalos verdaderos.
Paso 5
El resultado puede mostrarse de distintas formas.
Forma de desigualdad:
Notación de intervalo:
Paso 6