Precálculo Ejemplos

Hallar las propiedades x=1/4y^2
Paso 1
Reescribe la ecuación en forma de vértice.
Toca para ver más pasos...
Paso 1.1
Combina y .
Paso 1.2
Completa el cuadrado de .
Toca para ver más pasos...
Paso 1.2.1
Usa la forma , para obtener los valores de , y .
Paso 1.2.2
Considera la forma de vértice de una parábola.
Paso 1.2.3
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 1.2.3.1
Sustituye los valores de y en la fórmula .
Paso 1.2.3.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.3.2.1
Cancela el factor común de y .
Toca para ver más pasos...
Paso 1.2.3.2.1.1
Factoriza de .
Paso 1.2.3.2.1.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 1.2.3.2.1.2.1
Cancela el factor común.
Paso 1.2.3.2.1.2.2
Reescribe la expresión.
Paso 1.2.3.2.2
Multiplica el numerador por la recíproca del denominador.
Paso 1.2.3.2.3
Multiplica por .
Paso 1.2.4
Obtén el valor de con la fórmula .
Toca para ver más pasos...
Paso 1.2.4.1
Sustituye los valores de , y en la fórmula .
Paso 1.2.4.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 1.2.4.2.1
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.4.2.1.1
Elevar a cualquier potencia positiva da como resultado .
Paso 1.2.4.2.1.2
Combina y .
Paso 1.2.4.2.1.3
Divide por .
Paso 1.2.4.2.1.4
Divide por .
Paso 1.2.4.2.1.5
Multiplica por .
Paso 1.2.4.2.2
Suma y .
Paso 1.2.5
Sustituye los valores de , y en la forma de vértice .
Paso 1.3
Establece igual al nuevo lado derecho.
Paso 2
Usa la forma de vértice, , para determinar los valores de , y .
Paso 3
Como el valor de es positivo, la parábola se abre hacia la derecha.
Abre a la derecha
Paso 4
Obtén el vértice .
Paso 5
Obtén , la distancia desde el vértice hasta el foco.
Toca para ver más pasos...
Paso 5.1
Obtén la distancia desde el vértice hasta un foco de la parábola con la siguiente fórmula.
Paso 5.2
Sustituye el valor de en la fórmula.
Paso 5.3
Simplifica.
Toca para ver más pasos...
Paso 5.3.1
Combina y .
Paso 5.3.2
Simplifica mediante la división de números.
Toca para ver más pasos...
Paso 5.3.2.1
Divide por .
Paso 5.3.2.2
Divide por .
Paso 6
Obtén el foco.
Toca para ver más pasos...
Paso 6.1
El foco de una parábola puede obtenerse al sumar a la coordenada x si la parábola abre hacia la izquierda o hacia la derecha.
Paso 6.2
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 7
Obtén el eje de simetría mediante la obtención de la línea que pasa por el vértice y el foco.
Paso 8
Obtén la directriz.
Toca para ver más pasos...
Paso 8.1
La directriz de una parábola es la recta vertical que se obtiene al restar de la coordenada x del vértice si la parábola abre hacia la izquierda o hacia la derecha.
Paso 8.2
Sustituye los valores conocidos de y en la fórmula y simplifica.
Paso 9
Usa las propiedades de la parábola para analizar y graficar la parábola.
Dirección: abre a la derecha
Vértice:
Foco:
Eje de simetría:
Directriz:
Paso 10