Ingresa un problema...
Precálculo Ejemplos
Paso 1
Simplifica cada término en la ecuación para establecer el lado derecho igual a . La ecuación ordinaria de una elipse o hipérbola requiere que el lado derecho de la ecuación sea .
Paso 2
Esta es la forma de una hipérbola. Usa esta forma para determinar los valores usados a fin de obtener los vértices y las asíntotas de la hipérbola.
Paso 3
Haz coincidir los valores de esta hipérbola con los de la ecuación ordinaria. La variable representa el desplazamiento de x desde el origen, representa el desplazamiento de y desde el origen, .
Paso 4
El centro de una hipérbola sigue la forma de . Sustituye los valores de y .
Paso 5
Paso 5.1
Obtén la distancia desde el centro hasta un foco de la hipérbola con la siguiente fórmula.
Paso 5.2
Sustituye los valores de y en la fórmula.
Paso 5.3
Simplifica.
Paso 5.3.1
Reescribe como .
Paso 5.3.1.1
Usa para reescribir como .
Paso 5.3.1.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 5.3.1.3
Combina y .
Paso 5.3.1.4
Cancela el factor común de .
Paso 5.3.1.4.1
Cancela el factor común.
Paso 5.3.1.4.2
Reescribe la expresión.
Paso 5.3.1.5
Evalúa el exponente.
Paso 5.3.2
Simplifica la expresión.
Paso 5.3.2.1
Eleva a la potencia de .
Paso 5.3.2.2
Suma y .
Paso 6
Paso 6.1
El primer vértice de una hipérbola puede obtenerse al sumar a .
Paso 6.2
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 6.3
El segundo vértice de una hipérbola puede obtenerse mediante la resta de de .
Paso 6.4
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 6.5
Los vértices de una hipérbola siguen la forma de . Las hipérbolas tienen dos vértices.
Paso 7
Paso 7.1
El primer foco de una hipérbola puede obtenerse al sumar a .
Paso 7.2
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 7.3
El segundo foco de una hipérbola puede obtenerse mediante la resta de de .
Paso 7.4
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 7.5
Los focos de una hipérbola siguen la forma de . Las hipérbolas tienen dos focos.
Paso 8
Paso 8.1
Obtén la excentricidad con la siguiente fórmula.
Paso 8.2
Sustituye los valores de y en la fórmula.
Paso 8.3
Simplifica.
Paso 8.3.1
Simplifica el numerador.
Paso 8.3.1.1
Reescribe como .
Paso 8.3.1.1.1
Usa para reescribir como .
Paso 8.3.1.1.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 8.3.1.1.3
Combina y .
Paso 8.3.1.1.4
Cancela el factor común de .
Paso 8.3.1.1.4.1
Cancela el factor común.
Paso 8.3.1.1.4.2
Reescribe la expresión.
Paso 8.3.1.1.5
Evalúa el exponente.
Paso 8.3.1.2
Eleva a la potencia de .
Paso 8.3.1.3
Suma y .
Paso 8.3.2
Combina y en un solo radical.
Paso 8.3.3
Cancela el factor común de y .
Paso 8.3.3.1
Factoriza de .
Paso 8.3.3.2
Cancela los factores comunes.
Paso 8.3.3.2.1
Factoriza de .
Paso 8.3.3.2.2
Cancela el factor común.
Paso 8.3.3.2.3
Reescribe la expresión.
Paso 8.3.4
Reescribe como .
Paso 8.3.5
Multiplica por .
Paso 8.3.6
Combina y simplifica el denominador.
Paso 8.3.6.1
Multiplica por .
Paso 8.3.6.2
Eleva a la potencia de .
Paso 8.3.6.3
Eleva a la potencia de .
Paso 8.3.6.4
Usa la regla de la potencia para combinar exponentes.
Paso 8.3.6.5
Suma y .
Paso 8.3.6.6
Reescribe como .
Paso 8.3.6.6.1
Usa para reescribir como .
Paso 8.3.6.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 8.3.6.6.3
Combina y .
Paso 8.3.6.6.4
Cancela el factor común de .
Paso 8.3.6.6.4.1
Cancela el factor común.
Paso 8.3.6.6.4.2
Reescribe la expresión.
Paso 8.3.6.6.5
Evalúa el exponente.
Paso 8.3.7
Simplifica el numerador.
Paso 8.3.7.1
Combina con la regla del producto para radicales.
Paso 8.3.7.2
Multiplica por .
Paso 9
Paso 9.1
Obtén el valor del parámetro focal de la hipérbola con la siguiente fórmula.
Paso 9.2
Sustituye los valores de y en la fórmula.
Paso 9.3
Simplifica.
Paso 9.3.1
Eleva a la potencia de .
Paso 9.3.2
Multiplica por .
Paso 9.3.3
Combina y simplifica el denominador.
Paso 9.3.3.1
Multiplica por .
Paso 9.3.3.2
Eleva a la potencia de .
Paso 9.3.3.3
Eleva a la potencia de .
Paso 9.3.3.4
Usa la regla de la potencia para combinar exponentes.
Paso 9.3.3.5
Suma y .
Paso 9.3.3.6
Reescribe como .
Paso 9.3.3.6.1
Usa para reescribir como .
Paso 9.3.3.6.2
Aplica la regla de la potencia y multiplica los exponentes, .
Paso 9.3.3.6.3
Combina y .
Paso 9.3.3.6.4
Cancela el factor común de .
Paso 9.3.3.6.4.1
Cancela el factor común.
Paso 9.3.3.6.4.2
Reescribe la expresión.
Paso 9.3.3.6.5
Evalúa el exponente.
Paso 9.3.4
Cancela el factor común de y .
Paso 9.3.4.1
Factoriza de .
Paso 9.3.4.2
Cancela los factores comunes.
Paso 9.3.4.2.1
Factoriza de .
Paso 9.3.4.2.2
Cancela el factor común.
Paso 9.3.4.2.3
Reescribe la expresión.
Paso 10
Las asíntotas siguen la forma porque esta hipérbola abre hacia la izquierda y la derecha.
Paso 11
Paso 11.1
Suma y .
Paso 11.2
Combina y .
Paso 12
Paso 12.1
Suma y .
Paso 12.2
Combina y .
Paso 12.3
Mueve a la izquierda de .
Paso 13
Esta hipérbola tiene dos asíntotas.
Paso 14
Estos valores representan los valores importantes para la representación gráfica y el análisis de una hipérbola.
Centro:
Vértices:
Focos:
Excentricidad:
Parámetro focal:
Asíntotas: ,
Paso 15