Ingresa un problema...
Precálculo Ejemplos
Paso 1
Paso 1.1
Reescribe la ecuación como .
Paso 1.2
Divide cada término en por y simplifica.
Paso 1.2.1
Divide cada término en por .
Paso 1.2.2
Simplifica el lado izquierdo.
Paso 1.2.2.1
Cancela el factor común de .
Paso 1.2.2.1.1
Cancela el factor común.
Paso 1.2.2.1.2
Divide por .
Paso 1.2.3
Simplifica el lado derecho.
Paso 1.2.3.1
Mueve el negativo al frente de la fracción.
Paso 1.3
Resta de ambos lados de la ecuación.
Paso 1.4
Reordena los términos.
Paso 2
Usa la forma de vértice, , para determinar los valores de , y .
Paso 3
Como el valor de es negativo, la parábola se abre hacia abajo.
Abre hacia abajo
Paso 4
Obtén el vértice .
Paso 5
Paso 5.1
Obtén la distancia desde el vértice hasta un foco de la parábola con la siguiente fórmula.
Paso 5.2
Sustituye el valor de en la fórmula.
Paso 5.3
Simplifica.
Paso 5.3.1
Cancela el factor común de y .
Paso 5.3.1.1
Reescribe como .
Paso 5.3.1.2
Mueve el negativo al frente de la fracción.
Paso 5.3.2
Combina y .
Paso 5.3.3
Cancela el factor común de y .
Paso 5.3.3.1
Factoriza de .
Paso 5.3.3.2
Cancela los factores comunes.
Paso 5.3.3.2.1
Factoriza de .
Paso 5.3.3.2.2
Cancela el factor común.
Paso 5.3.3.2.3
Reescribe la expresión.
Paso 5.3.4
Multiplica el numerador por la recíproca del denominador.
Paso 5.3.5
Multiplica .
Paso 5.3.5.1
Multiplica por .
Paso 5.3.5.2
Multiplica por .
Paso 6
Paso 6.1
El foco de una parábola puede obtenerse al sumar a la coordenada y si la parábola abre hacia arriba o hacia abajo.
Paso 6.2
Sustituye los valores conocidos de , y en la fórmula y simplifica.
Paso 7
Obtén el eje de simetría mediante la obtención de la línea que pasa por el vértice y el foco.
Paso 8
Paso 8.1
La directriz de una parábola es la recta horizontal que se obtiene al restar de la coordenada y del vértice si la parábola abre hacia arriba o hacia abajo.
Paso 8.2
Sustituye los valores conocidos de y en la fórmula y simplifica.
Paso 9
Usa las propiedades de la parábola para analizar y graficar la parábola.
Dirección: abre hacia abajo
Vértice:
Foco:
Eje de simetría:
Directriz:
Paso 10