Precálculo Ejemplos

حل من أجل ? csc(x)^2=6cot(x)+8
Paso 1
Reemplaza con según la identidad de .
Paso 2
Sustituye por .
Paso 3
Resta de ambos lados de la ecuación.
Paso 4
Resta de ambos lados de la ecuación.
Paso 5
Resta de .
Paso 6
Factoriza con el método AC.
Toca para ver más pasos...
Paso 6.1
Considera la forma . Encuentra un par de números enteros cuyo producto sea y cuya suma sea . En este caso, cuyo producto es y cuya suma es .
Paso 6.2
Escribe la forma factorizada mediante estos números enteros.
Paso 7
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 8
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 8.1
Establece igual a .
Paso 8.2
Suma a ambos lados de la ecuación.
Paso 9
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 9.1
Establece igual a .
Paso 9.2
Resta de ambos lados de la ecuación.
Paso 10
La solución final comprende todos los valores que hacen verdadera.
Paso 11
Sustituye por .
Paso 12
Establece cada una de las soluciones para obtener el valor de .
Paso 13
Resuelve en .
Toca para ver más pasos...
Paso 13.1
Resta la inversa de la cotangente de ambos lados de la ecuación para extraer del interior de la cotangente.
Paso 13.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 13.2.1
Evalúa .
Paso 13.3
La función cotangente es positiva en el primer y el tercer cuadrante. Para obtener la segunda solución, suma el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Paso 13.4
Resuelve
Toca para ver más pasos...
Paso 13.4.1
Elimina los paréntesis.
Paso 13.4.2
Elimina los paréntesis.
Paso 13.4.3
Suma y .
Paso 13.5
Obtén el período de .
Toca para ver más pasos...
Paso 13.5.1
El período de la función puede calcularse mediante .
Paso 13.5.2
Reemplaza con en la fórmula para el período.
Paso 13.5.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 13.5.4
Divide por .
Paso 13.6
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Paso 14
Resuelve en .
Toca para ver más pasos...
Paso 14.1
Resta la inversa de la cotangente de ambos lados de la ecuación para extraer del interior de la cotangente.
Paso 14.2
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 14.2.1
El valor exacto de es .
Paso 14.3
The cotangent function is negative in the second and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the third quadrant.
Paso 14.4
Simplifica la expresión para obtener la segunda solución.
Toca para ver más pasos...
Paso 14.4.1
Suma a .
Paso 14.4.2
El ángulo resultante de es positivo y coterminal con .
Paso 14.5
Obtén el período de .
Toca para ver más pasos...
Paso 14.5.1
El período de la función puede calcularse mediante .
Paso 14.5.2
Reemplaza con en la fórmula para el período.
Paso 14.5.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 14.5.4
Divide por .
Paso 14.6
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
Paso 15
Enumera todas las soluciones.
, para cualquier número entero
Paso 16
Consolida las soluciones.
Toca para ver más pasos...
Paso 16.1
Consolida y en .
, para cualquier número entero
Paso 16.2
Consolida y en .
, para cualquier número entero
, para cualquier número entero