Precálculo Ejemplos

حل من أجل ? (tan(x)-1)(sec(x)-1)=0
Paso 1
Simplifica el lado izquierdo de la ecuación.
Toca para ver más pasos...
Paso 1.1
Expande con el método PEIU (primero, exterior, interior, ultimo).
Toca para ver más pasos...
Paso 1.1.1
Aplica la propiedad distributiva.
Paso 1.1.2
Aplica la propiedad distributiva.
Paso 1.1.3
Aplica la propiedad distributiva.
Paso 1.2
Simplifica cada término.
Toca para ver más pasos...
Paso 1.2.1
Mueve a la izquierda de .
Paso 1.2.2
Reescribe como .
Paso 1.2.3
Reescribe como .
Paso 1.2.4
Multiplica por .
Paso 2
Factoriza .
Toca para ver más pasos...
Paso 2.1
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 2.1.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 2.1.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 2.2
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 4
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 4.1
Establece igual a .
Paso 4.2
Resuelve en .
Toca para ver más pasos...
Paso 4.2.1
Suma a ambos lados de la ecuación.
Paso 4.2.2
Calcula la inversa de la secante de ambos lados de la ecuación para extraer del interior de la secante.
Paso 4.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 4.2.3.1
El valor exacto de es .
Paso 4.2.4
La secante es positiva en el primer y el cuarto cuadrante. Para obtener la segunda solución, resta el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Paso 4.2.5
Resta de .
Paso 4.2.6
Obtén el período de .
Toca para ver más pasos...
Paso 4.2.6.1
El período de la función puede calcularse mediante .
Paso 4.2.6.2
Reemplaza con en la fórmula para el período.
Paso 4.2.6.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 4.2.6.4
Divide por .
Paso 4.2.7
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Paso 5
Establece igual a y resuelve .
Toca para ver más pasos...
Paso 5.1
Establece igual a .
Paso 5.2
Resuelve en .
Toca para ver más pasos...
Paso 5.2.1
Suma a ambos lados de la ecuación.
Paso 5.2.2
Resta la inversa de la tangente de ambos lados de la ecuación para extraer del interior de la tangente.
Paso 5.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.2.3.1
El valor exacto de es .
Paso 5.2.4
La función tangente es positiva en el primer y el tercer cuadrante. Para obtener la segunda solución, suma el ángulo de referencia de para obtener la solución en el cuarto cuadrante.
Paso 5.2.5
Simplifica .
Toca para ver más pasos...
Paso 5.2.5.1
Para escribir como una fracción con un denominador común, multiplica por .
Paso 5.2.5.2
Combina fracciones.
Toca para ver más pasos...
Paso 5.2.5.2.1
Combina y .
Paso 5.2.5.2.2
Combina los numeradores sobre el denominador común.
Paso 5.2.5.3
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.2.5.3.1
Mueve a la izquierda de .
Paso 5.2.5.3.2
Suma y .
Paso 5.2.6
Obtén el período de .
Toca para ver más pasos...
Paso 5.2.6.1
El período de la función puede calcularse mediante .
Paso 5.2.6.2
Reemplaza con en la fórmula para el período.
Paso 5.2.6.3
El valor absoluto es la distancia entre un número y cero. La distancia entre y es .
Paso 5.2.6.4
Divide por .
Paso 5.2.7
El período de la función es , por lo que los valores se repetirán cada radianes en ambas direcciones.
, para cualquier número entero
, para cualquier número entero
, para cualquier número entero
Paso 6
La solución final comprende todos los valores que hacen verdadera.
, para cualquier número entero
Paso 7
Consolida las respuestas.
Toca para ver más pasos...
Paso 7.1
Consolida y en .
, para cualquier número entero
Paso 7.2
Consolida y en .
, para cualquier número entero
, para cualquier número entero