Ingresa un problema...
Precálculo Ejemplos
Paso 1
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 2
Paso 2.1
Convierte la desigualdad en una ecuación.
Paso 2.2
Factoriza el lado izquierdo de la ecuación.
Paso 2.2.1
Factoriza de .
Paso 2.2.1.1
Factoriza de .
Paso 2.2.1.2
Factoriza de .
Paso 2.2.1.3
Factoriza de .
Paso 2.2.2
Reescribe como .
Paso 2.2.3
Factoriza.
Paso 2.2.3.1
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 2.2.3.2
Elimina los paréntesis innecesarios.
Paso 2.3
Si cualquier factor individual en el lado izquierdo de la ecuación es igual a , la expresión completa será igual a .
Paso 2.4
Establece igual a y resuelve .
Paso 2.4.1
Establece igual a .
Paso 2.4.2
Resuelve en .
Paso 2.4.2.1
Calcula la raíz especificada de ambos lados de la ecuación para eliminar el exponente en el lado izquierdo.
Paso 2.4.2.2
Simplifica .
Paso 2.4.2.2.1
Reescribe como .
Paso 2.4.2.2.2
Extrae los términos de abajo del radical, bajo el supuesto de que tienes números reales positivos.
Paso 2.4.2.2.3
Más o menos es .
Paso 2.5
Establece igual a y resuelve .
Paso 2.5.1
Establece igual a .
Paso 2.5.2
Resta de ambos lados de la ecuación.
Paso 2.6
Establece igual a y resuelve .
Paso 2.6.1
Establece igual a .
Paso 2.6.2
Suma a ambos lados de la ecuación.
Paso 2.7
La solución final comprende todos los valores que hacen verdadera.
Paso 2.8
Usa cada raíz para crear intervalos de prueba.
Paso 2.9
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Paso 2.9.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 2.9.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 2.9.1.2
Reemplaza con en la desigualdad original.
Paso 2.9.1.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 2.9.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 2.9.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 2.9.2.2
Reemplaza con en la desigualdad original.
Paso 2.9.2.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 2.9.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 2.9.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 2.9.3.2
Reemplaza con en la desigualdad original.
Paso 2.9.3.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 2.9.4
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Paso 2.9.4.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 2.9.4.2
Reemplaza con en la desigualdad original.
Paso 2.9.4.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 2.9.5
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Verdadero
Falso
Falso
Verdadero
Verdadero
Falso
Falso
Verdadero
Paso 2.10
La solución consiste en todos los intervalos verdaderos.
o o
Paso 2.11
Combina los intervalos.
Paso 3
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 4