Precálculo Ejemplos

Hallar el ratio de cambio medio (2,-5) and (-10,3)
(2,-5) y (-10,3)
Paso 1
Para obtener la tasa de cambio promedio, obtén la pendiente.
Paso 2
La pendiente es igual al cambio en y sobre el cambio en x, o elevación sobre avance.
m=cambio en ycambio en x
Paso 3
El cambio en x es igual a la diferencia en las coordenadas x (también llamada "avance") y el cambio en y es igual a la diferencia en las coordenadas y (también llamada "elevación").
m=y2-y1x2-x1
Paso 4
Sustituye los valores de x y y en la ecuación para obtener la pendiente.
m=3-(-5)-10-(2)
Paso 5
Simplifica.
Toca para ver más pasos...
Paso 5.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 5.1.1
Multiplica -1 por -5.
m=3+5-10-(2)
Paso 5.1.2
Suma 3 y 5.
m=8-10-(2)
m=8-10-(2)
Paso 5.2
Simplifica el denominador.
Toca para ver más pasos...
Paso 5.2.1
Multiplica -1 por 2.
m=8-10-2
Paso 5.2.2
Resta 2 de -10.
m=8-12
m=8-12
Paso 5.3
Reduce la expresión mediante la cancelación de los factores comunes.
Toca para ver más pasos...
Paso 5.3.1
Cancela el factor común de 8 y -12.
Toca para ver más pasos...
Paso 5.3.1.1
Factoriza 4 de 8.
m=4(2)-12
Paso 5.3.1.2
Cancela los factores comunes.
Toca para ver más pasos...
Paso 5.3.1.2.1
Factoriza 4 de -12.
m=424-3
Paso 5.3.1.2.2
Cancela el factor común.
m=424-3
Paso 5.3.1.2.3
Reescribe la expresión.
m=2-3
m=2-3
m=2-3
Paso 5.3.2
Mueve el negativo al frente de la fracción.
m=-23
m=-23
m=-23
Paso 6
image of graph
(2,-5) and (-10,3)
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]