Precálculo Ejemplos

Encontrar el dominio f(x) = square root of 1-5/x
Paso 1
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 2
Resuelve
Toca para ver más pasos...
Paso 2.1
Resta de ambos lados de la desigualdad.
Paso 2.2
Multiplica ambos lados por .
Paso 2.3
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.3.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 2.3.1.1
Mueve el signo menos inicial en al numerador.
Paso 2.3.1.2
Cancela el factor común.
Paso 2.3.1.3
Reescribe la expresión.
Paso 2.4
Resuelve
Toca para ver más pasos...
Paso 2.4.1
Reescribe la ecuación como .
Paso 2.4.2
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 2.4.2.1
Divide cada término en por .
Paso 2.4.2.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 2.4.2.2.1
La división de dos valores negativos da como resultado un valor positivo.
Paso 2.4.2.2.2
Divide por .
Paso 2.4.2.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 2.4.2.3.1
Divide por .
Paso 2.5
Obtén el dominio de .
Toca para ver más pasos...
Paso 2.5.1
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 2.5.2
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 2.6
Usa cada raíz para crear intervalos de prueba.
Paso 2.7
Elije un valor de prueba de cada intervalo y conecta este valor a la desigualdad original para determinar qué intervalos satisfacen la desigualdad.
Toca para ver más pasos...
Paso 2.7.1
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 2.7.1.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 2.7.1.2
Reemplaza con en la desigualdad original.
Paso 2.7.1.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 2.7.2
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 2.7.2.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 2.7.2.2
Reemplaza con en la desigualdad original.
Paso 2.7.2.3
del lado izquierdo es menor que del lado derecho, lo que significa que el enunciado dado es falso.
Falso
Falso
Paso 2.7.3
Prueba un valor en el intervalo para ver si este hace que la desigualdad sea verdadera.
Toca para ver más pasos...
Paso 2.7.3.1
Elije un valor en el intervalo y ve si este valor hace que la desigualdad original sea verdadera.
Paso 2.7.3.2
Reemplaza con en la desigualdad original.
Paso 2.7.3.3
del lado izquierdo es mayor que del lado derecho, lo que significa que el enunciado dado es siempre verdadero.
Verdadero
Verdadero
Paso 2.7.4
Compara los intervalos para determinar cuáles satisfacen la desigualdad original.
Verdadero
Falso
Verdadero
Verdadero
Falso
Verdadero
Paso 2.8
La solución consiste en todos los intervalos verdaderos.
o
o
Paso 3
Establece el denominador en igual que para obtener el lugar donde no está definida la expresión.
Paso 4
El dominio son todos los valores de que hacen que la expresión sea definida.
Notación de intervalo:
Notación del constructor de conjuntos:
Paso 5